

OSM Information Model
RELEASE TWO

April 2017

CONTENTS
Open Source MANO Information Model 1

MANO Descriptor Overview ..2
Information elements ... 2
Network Service Descriptor (NSD) .. 3

ETSI MANO Common Object Models ..7
MANO Software Components ...8

VNF Manager .. 8
NFV Orchestrator .. 9
Interface.. 9

Enhanced Platform Awareness Workload Placement ...10
Network Service Descriptor (nsd:nsd) ...11

NSD Data Model.. 12
nsd:connection-point .. 15
nsd:constituent-vnfd ... 16
nsd:placement-groups .. 17
nsd:ip-profiles ... 19
nsd:vnf-dependency ... 21
nsd:monitoring-param .. 22
nsd:input-parameter-xpath .. 26
nsd:parameter-pool .. 27
nsd:service-primitive... 28
nsd:initial-config-primitive .. 33
nsd:cloud-config ... 34

Virtual Network Function Descriptor ..36
VNFD Enhanced Platform Awareness Elements .. 38
VNFD Data Model (vnfd:vnfd) ... 41

Virtual Link Descriptor (nsd:vld) ... 104
Fields ... 104

VNF Forwarding Graph Descriptor (nsd:vnffgd) ... 110
Fields ... 110
Schema ... 114

MANO YANG Models .. 123
nsd.yang Model .. 125
vnfd.yang Model ... 139
mano-types.yang Model ... 149

Open Source MANO Information Model
Today’s service providers have a growing interest in migrating custom, proprietary, hardware-
based network functions to virtualized hardware in data centers—the cloud. Cloud-based
network functions, referred to as virtual network functions (VNFs), are the software
implementation of network functions that can be deployed on a network function virtualization
infrastructure (NFVI).

This cloud model paradigm, Network Function Virtualization (NFV), is an initiative to decouple
hardware from software. As a subset of software defined networking (SDN), NFV moves
functions from specialized applications that run on COTS equipment (servers, storage,
switches) to a virtual cloud environment. With virtualization, you use network resources
without having to worry about where assets are physically located or how they are organized.

NFV is fundamentally changing how network services are deployed and managed, by promising
agile service delivery, faster development cycles, and optimal resource usage. However, there
is an obstacle to broader adoption due to a lack of a standard platform for deploying and
managing VNFs and network services. In particular, there is a lack of consistency and openness
in management and orchestration tools. The promise of NFV can be realized only if the VNF
applications behave in a way that can be easily deployed, scaled, and managed.

The European Telecommunications Standards Institute (ETSI) has defined a framework for
Network Functions Virtualization and Management and Orchestration Architectures (MANO).
These architectures are broadly defined to let vendors interpret and extend in proprietary
ways. As a result, SDN/NFV deployments can stall when network operators lack a standard,
vendor-neutral way to deploy VNFs, and VNF builders lack a standard platform for delivering
VNFs.

OSM Information Model Open Source MANO Information Model

2

MANO Descriptor Overview
A descriptor is a configuration template that defines the main properties of managed objects in
a network, such as a virtual network function (VNF) and network service (NS).

A network service describes the relationship between its network functions and the links that
connect all network functions implemented in the NFVI network. These links interconnect the
VNFs to connection points, which provide an interface to the existing network. Connection
points also let you include physical network functions (PNFs) to expedite network expansion
and evolution. The links in a network service form a network connection topology (NCT). The
following diagram illustrates the high-level structure of the elements in the NS.

Information elements

Information in a network service is structured into information elements, which might contain
a single value or additional information elements that form a tree structure. Information
element are classified as one of the following types.

 Leaf element — A single information element that specifies a value within the scope of
the present document. The data type of the value is dependent on the information it
should carry, such as a string, integer, list, container, choice.

 Reference element — An information element that contains a reference to another
information element. The reference may be represented by a URI but depends on the
concrete implementation of the information model.

 Sub element — An information element that specifies another level in the tree.

Open Source MANO Information Model OSM Information Model

 3

In each case, the number of occurrences of the same element inside its parent element is
specified by the cardinality of the element. If the cardinality is a positive integer n, the element
occurs exactly n times. If the cardinality is specified as a range, then the number of occurrences
cannot exceed that range. A range that starts with "0" indicates that the element may be
omitted.

Each of these information elements has a unique name along the whole path in the tree that
leads to that element from the root of the tree.

The information elements can be used in two different contexts: As descriptors or as run-time
instance records.

Source: ETSI NFV MANO WI document

Network Service Descriptor (NSD)

The network service descriptor (NSD) is the top-level construct used for designing the service
chains, referencing all other descriptors that describe components that are part of that
network service.

OSM Information Model Open Source MANO Information Model

4

The NSD consists of static information elements as defined in the nsd base element and
describes deployment flavors of the network service. The NSD is used by the NFV orchestrator
to instantiate a network service.

The following four information elements are defined apart from the top-level network service:

 Virtual network function (VNF) information element

 Physical network function (PNF) information element

 Virtual Link (VL) information element.

 VNF forwarding graph (VNFFG) information element

The NSD references one or more VNFDs. These VNFs are connected VLDs, and the VNFFGD
determines the traffic flow in the service chain. The NSD also exposes a set of connection
points to enable connectivity to other network services or to the external world.

See "Network Service Descriptor (nsd:nsd)" on page 11.

VNF Descriptor (VNFD)

The virtual network function descriptor (VNFD) is a deployment template that describes the
attributes of a single VNF. The VNFD is used primarily by the VNF manager (VNFM) in the
process of VNF instantiation and lifecycle management of a VNF instance. The information
provided in the VNFD is also used by the NFV orchestrator (NFVO) to manage and orchestrate
network services and virtualized resources on the NFV infrastructure (NFVI).

The VNFD also contains:

 VNF images, which contain both the application and the Launchpad

 Connectivity (connection points and virtual links), interface, and KPI requirements that
can be used by MANO functional blocks to establish appropriate virtual links:

 Within the NFVI between its VNFC instances

 Between a VNF instance and the outside network via endpoint interfaces to the
other network functions in the network service

 Virtual deployment unit (VDU) that specifies the VM/VNFC compute, storage, and
network requirements

 Platform resource requirements, such as CPU, memory, interfaces, and network

 Special characteristics related to EPA attributes and performance capabilities

 Scaling properties

See "VNFD Data Model (vnfd:vnfd)" on page 41.

Open Source MANO Information Model OSM Information Model

 5

PNF Descriptor (PNFD)

A PNF Descriptor describe a physical (legacy) network function. The only elements within a
PNFD are the interconnections (connection points and virtual links). The PNFD is needed if the
network service includes a physical device to support network evolution.

Virtual Link Descriptor (VLD)

A virtual link descriptor (VLD) is a deployment template that describes the resource
requirements needed for a link between VNFs, PNFs and endpoints of the network service,
which could be met by various link options that are available in the NFVI.

The NFVO can select an option after evaluating the VNFFG to determine the appropriate NFVI
to be used based on functional (e.g. dual separate paths for resilience) and other needs (e.g.
geography and regulatory requirements).

Network connections are defined by connection points and virtual links. There are three types
of connection points:

 Connect a network service to the outside world, such as the network service endpoint,
described in the NSD

 Connect between VNFs within a network service, such as the external interface of the
VNF, described in the VNFD

 Connect between VMs, described in the VNFC

There are also two types of virtual links:

 External virtual links, which can be connected to network service endpoints and external
VNF interfaces

 Internal virtual links, which can be connected to external VNF interfaces and VNFCs

Virtual links also follow the Metro Ethernet Forum E-LINE, E-TREE, and E-LAN services. Virtual
link descriptors (VLDs) contain the bandwidth and QoS requirements of the interconnection.

VLDs are required for a functioning NSD.

See "Virtual Link Descriptor (nsd:vld)" on page 104.

Virtual Deployment Unit (VDU)

A VDU is a basic part of VNF. VDUs are virtual machines that host the network function, such
as: Virtual machine specificationComputation properties (RAM size, disk size, memory page
size, number of CPUs, number of cores per CPU, number of threads per core)Storage
requirementsInitiation and termination scriptsHigh availability redundancy modelScale
out/scale in limits A VDU is deployed as a VM in the VNF. See "VDU Data Model (vnfd:vdu)" on
page 61.

OSM Information Model Open Source MANO Information Model

6

Virtual Network Function Component (VNFC)

Software that provides VNFs can be structured into software components, the implementation
view of a software architecture. These components can then be packaged into one or more
images, the deployment view of a software architecture. These software components are
called Virtual Network Function Components (VNFCs). VNFs are implemented with one or more
VNFCs, where each VNFC instance generally maps 1:1 to a VM image or a container, as defined
in the VDU.

Open Source MANO Information Model OSM Information Model

 7

ETSI MANO Common Object Models
The ETSI MANO object model framework supports simple onboarding, deployment, and
management of virtual network functions. With extensive support for Enhanced Platform
Awareness (EPA), the descriptors enable network function suppliers and network service
providers to deploy virtual network functions quickly and easily, in the most cost-efficient
manner.

ETSI MANO objects are modeled as YANG objects, which the tool chain can automatically
convert into NETCONF objects, XML objects, protocol buffers (protobufs), and GObject
introspect-capable data objects by multiple languages (C, C++, Python, LUA).

The following advanced functions are supported by ETSI Management Orchestration:

 Maximize efficiency and performance by intelligently placing workloads on advanced NFV
infrastructure capabilities, such as Enhanced Platform Awareness (EPA). See "Enhanced
Platform Awareness Workload Placement" on page 10.

 Interface physical network functions (PNFs) and chain them together logically to create
service chains made entirely of VNFs, PNFs, or combinations of both.

See also

Network Functions Virtualisation (NFV); Management and Orchestration

Network Functions Virtualisation (NFV); Architectural Framework

MANO Software Components
The Virtualized Infrastructure Manager (VIM) is responsible for managing the NFV
infrastructure (compute, network and storage resources).

The VIM provides a northbound interface for the VNF Manager and NFV Orchestrator, and
abstracts rest of the system from the details of underlying cloud management platform.

Reference: ETSI GS NFV 002 V1.2.1 (2014-12)

VNF Manager

The VNF Manager (VNFM) manages the lifecycle of the components and services. VNFM
oversees the management of VNF instances, as well as the following:

 Starting the VNF from its descriptor and managing the VNF

 Scaling out/in and up/down of VNFs

 Monitoring and collecting parameters that determine the health of the VNF

Open Source MANO Information Model OSM Information Model

 9

NFV Orchestrator

The NFV Orchestrator (NFVO) is responsible for network service management, such as creating
virtual function instances to meet service requirements. The NFVO manages network service
lifecycle and resource orchestration across multiple VIMs.

Other NFVO functionality includes the following:

 Onboarding new network services and virtual network function packages

 Managing global resources, such as the physical and logical network topology of how
various VNFs and PNFs connect

 Handling policy management related to scalability, reliability, and high availability for
network service instances

 Authorizing network functions virtualization infrastructure (NFVI) resource requests

 Managing the network service (NS) service templates in the NS catalog

 Simplifying the job of launching new network services

Interface

Designed with open, standards-based APIs, such as NETCONF and REST, and common
information models, such as YANG, the Os-ma-nfvo interface is exposed through open,
standards-based interfaces such as REST. This design enables upper-level orchestrators, such as
Business Process Orchestrators or Service Orchestrators, to automate the entire service bring-
up process.

OSM Information Model Open Source MANO Information Model

10

Enhanced Platform Awareness Workload
Placement
In a legacy, chassis-based architecture, network function suppliers have chosen a specific CPU
for the network function. CPUs and the CPU cards are connected through a point-to-point,
redundant fabric, such as a Dual Star backplane. The bandwidth and latency are guaranteed
across the chassis fabric, and there is often a separate management fabric for separation of
data and control. In such an architecture, network functions do not have to deal with much
variability.

By contrast, datacenter architectures are highly variable and nondeterministic. Virtual
machines may be allocated from physical hosts anywhere within the same datacenter, and
both the host and the physical links between these hosts can be oversubscribed. The CPU cores
within a virtual machine might belong to different sockets on the physical host, leading to
cache and memory access issues. This variability can lead to VNFs with completely different
performance characteristics, even when they are placed in the same cloud infrastructure.

To ensure deterministic performance, OpenStack Enhanced Platform Awareness (EPA)
attributes can increase the efficiency of the network function for high-touch tasks, such as
packet forwarding and security. EPA attributes are discovered during the initial allocation of
virtual machines from the Virtualized Infrastructure Manager (VIM).

During the VNF instantiation process, the VNF request characteristics are compared to the
virtual machine capabilities in order to allocate workload placement across the corresponding
VMs. This design supports advanced placement such as:

 Placing high data rate workloads, such as load balancing and bearer plane forwarding, on
VMs that support NUMA affinity, hugepage setup, CPU pinning, and PCI pass through or
single root I/O virtualization (SR-IOV)

 Placing best-effort workloads, such as statistics gathering or log output, on “vanilla” VMs

 Placing workloads that form part of the same network service (same service chain) in the
same switching domain

 Distributing workloads, such as firewalling, DHCP, or other premise-related tasks, to a
remote customer premise device

 Providing advanced security capabilities, such as Quick Assist Technology (QAT) crypto
assist and Trusted Platform Module

Network Service Descriptor (nsd:nsd)
The network service descriptor (NSD) is the top-level construct used for designing the service
chains, referencing all other descriptors that describe components that are part of that
network service.

The NSD consists of static information elements as defined in the nsd base element and
describes deployment flavors of the network service. The NSD is used by the NFV orchestrator
to instantiate a network service.

The following four information elements are defined apart from the top-level network service:

 Virtual network function (VNF) information element

 Physical network function (PNF) information element

 Virtual Link (VL) information element.

 VNF forwarding graph (VNFFG) information element

The NSD references one or more VNFDs. These VNFs are connected VLDs, and the VNFFGD
determines the traffic flow in the service chain. The NSD also exposes a set of connection
points to enable connectivity to other network services or to the external world.

The following diagram illustrates the high-level object model for NSD.

(Reference: ETSI GS NFV 001 V1.1.1 (2014-12))

OSM Information Model Open Source MANO Information Model

12

NSD Data Model

Catalog for the network service descriptor.

ID Type Cardinality Description

id string 1 Unique identifier for the Network Service Descriptor
(NSD).

name string 1 NSD name.

short-name string 1 NSD short name to use as a label in the UI.

vendor string 1 Vendor of the NSD.

logo string 1 File path of the vendor-specific logo. For example,
icons/mylogo.png

The logo should be part of the network service
package.

SVG format is preferred, but PNG is supported.

Although there is no hard limit on size and
dimension, a square image under 200px by 200px is
preferred.

description string 1 Description of the NSD.

version string 1 Version of the NSD.

connection-
point

list 0..n A list of references to network service connection
points.

See "nsd:connection-point" on page 15.

vld list 0..n List of Virtual Link Descriptors (VLDs).

See "Virtual Link Descriptor (nsd:vld)" on page 104.

Open Source MANO Information Model OSM Information Model

 13

ID Type Cardinality Description

constituent-
vnfd

list 0..n List of Virtual Network Function Descriptors (VNFDs)
that are part of this network service.

See "nsd:constituent-vnfd" on page 16

placement-
groups

list 0..n List of placement groups at the NS level.

See "nsd:placement-groups" on page 17.

ip-profiles-list list 0..n List of IP profiles.

See "nsd:ip-profiles" on page 19.

vnf-dependency list 0..n List of VNF dependencies.

See "nsd:vnf-dependency" on page 21.

vnffgd list 0..n List of VNF forwarding graph descriptor (VNFFGD).

See VNF Forwarding Graph Descriptor (nsd:vnffgd).

monitoring-
param

list 0..n List of monitoring parameters at the network service
level.

See "nsd:monitoring-param" on page 22.

input-
parameter-
xpath

list 0..n List of xpath to parameters inside the NSD that can
be customized during instantiation.

See "nsd:input-parameter-xpath" on page 26.

parameter-pool list 0..n Pool of parameter values that must be pulled from
during configuration.

See "nsd:parameter-pool" on page 27

service-
primitive

list 0..n Network service level configuration primitives.

See "nsd:service-primitive" on page 28.

OSM Information Model Open Source MANO Information Model

14

ID Type Cardinality Description

initial-config-
primitive

list 0..n Set of configuration primitives to be executed when
the network service comes up.

See "nsd:initial-config-primitive" on page 33.

cloud-config list 0..n
Configure the list of users and public keys to be
injected as part of network service instantiation.

See "nsd:cloud-config" on page 34.

See also

For an example of full output of the nsd.yang file, see "nsd.yang Model" on page 125

nsd:connection-point

 A list of references to network service connection points.

Each network service (NS):

 Has one or more external connection points used to link the NS to other NS or to external
networks.

 Exposes these connection points to the orchestrator.

The orchestrator can construct network service chains by joining the connection points
between different network services.

Fields

ID Type Cardinality Description

name string 1 Name of the NS connection point.

type enum 1 Type of connection point.

Currently, only value VPORT (Virtual Port) is supported

See also

"Network Service Descriptor (nsd:nsd)" on page 11

OSM Information Model Open Source MANO Information Model

16

nsd:constituent-vnfd

A list of Virtual Network Function Descriptors (VNFDs) that are part of this network service.

Fields

ID Type Cardinality Description

member-
vnfd-index

uint64 1 [Required] Identifier/index for the VNFD.

Note: This separate ID is required so that multiple
VNFs can be part of a single network service.

vnfd-id-ref leafref 1 Identifier for the VNFD. This is a leafref to path:

"/vnfd:vnfd-catalog/vnfd:vnfd/vnfd:id"

start-by-
default

boolean 1 [Default true] VNFD is started as part of network
service instantiation.

See also

"Network Service Descriptor (nsd:nsd)" on page 11

Open Source MANO Information Model OSM Information Model

 17

nsd:placement-groups

A list of placement groups at the network service level.

Fields

ID Type Cardinality Description

name string 1 [Key] Placement group construct to define the compute
resource placement strategy in cloud environment.

requirement string 1 Describes the intent/rationale behind this placement
group.

Note: This free-text field is for human consumption only

strategy enum 1 Strategy associated with this placement group. The
following values are supported:

 COLOCATION: [Default] Share the physical
infrastructure (hypervisor/network) among all
members of this placement group.

 ISOLATION: Do not share the physical infrastructure
(hypervisor/network) among the members of this
placement group

member-
vnfd

list 0..n List of VNFDs that are part of this placement group.

See "member-vnfd" on page 18.

OSM Information Model Open Source MANO Information Model

18

member-vnfd

List of VNFDs that are part of this placement group.

ID Type Cardinality Description

member-vnf-
index-ref

leafref 1 Member VNF index of this member VNF.

"../../../constituent-vnfd/member-vnf-index"

vnfd-id-ref leafref 1 Identifier for the VNFD.

"../../../constituent-vnfd" +

 "[member-vnf-index = current()/../member-vnf-
index-ref]" +

 "/vnfd-id-ref"

See also

"Network Service Descriptor (nsd:nsd)" on page 11

Open Source MANO Information Model OSM Information Model

 19

nsd:ip-profiles

List of IP profiles that describe the IP characteristics for the virtual link.

Fields

ID Type Cardinality Description

name string 1 Name of the IP profile.

description string 1 Description of the IP profile.

ip-profile-params container 1 Information about the IP profile.

See "ip-profile-params" on page 19.

ip-profile-params

Information about the IP profile.

ID Type Cardinality Description

ip-version enum 1 [Default IPv4] Version of the Internet Protocol
used.

subnet-address inet:ip-prefix 1 Subnet IP prefix associated with this IP profile.

gateway-
address

inet:ip-
address

1 IP address of the default gateway associated
with this IP profile.

security-group string 1 Name of the security group.

dns-server list 0..n List of DNS servers associated with this IP
profile.

See "ip-profile-params:dns-server" on page 20.

OSM Information Model Open Source MANO Information Model

20

ID Type Cardinality Description

dhcp-params container 1 Container for DHCP parameters.

See "ip-profile-params:dhcp-params" on page
20.

subnet-prefix-
pool

string 1 VIM-specific reference to pre-created subnet
prefix.

ip-profile-params:dns-server

List of DNS servers associated with this IP profile.

ID Type Cardinality Description

address inet:ip-address 1 List of DNS servers associated with this IP profile.

ip-profile-params:dhcp-params

Container for DHCP parameters.

ID Type Cardinality Description

enabled boolean 1 [Default true] Indicates if DHCP is enabled.

start-
address

inet:ip-
address

1 Start IP address of the IP address range associated
with DHCP domain.

count uint32 1 Size of the DHCP pool associated with DHCP domain.

See also

"vnfd:connection-point" on page 59

"Network Service Descriptor (nsd:nsd)" on page 11

Open Source MANO Information Model OSM Information Model

 21

nsd:vnf-dependency

List of VNF dependencies in the Network Service Descriptor (NSD).

Fields

ID Type Cardinality Description

vnf-source-ref leafref 1 List of VNF dependencies.

"../../constituent-vnfd/vnfd-id-ref"

vnf-depends-on-
ref

leafref 1 Reference to VNFD that on which the source
VNF depends.

"../../constituent-vnfd/vnfd-id-ref"

See also

"Network Service Descriptor (nsd:nsd)" on page 11

OSM Information Model Open Source MANO Information Model

22

nsd:monitoring-param

List of monitoring parameters from VNFs to propagate to the Network Service Record (NSR).

Fields

ID Type Cardinality Description

id string 1 Identifier for the parameter.

name string 1 Name of the monitoring parameter

monitoring-param-ui-
data

grouping 1 Grouping of monitoring parameters on the
UI.

See "monitoring-param-ui-data" on page 23

monitoring-param-
value

grouping 1 See "monitoring-param-value" on page 24.

aggregation-type enum 1 Aggregation type for the monitoring
parameter:

 AVERAGE

 MINIMUM

 MAXIMUM

 COUNT

 SUM

vnfd-monitoring-
param

list 0..n List of VNFD monitoring parameters.

See "vnfd-monitoring-param" on page 25.

Open Source MANO Information Model OSM Information Model

 23

monitoring-param-ui-data

Grouping of monitoring parameters on the UI.

ID Type Cardinality Description

description string 1 Description of the monitoring parameter.

group-tag string 1 Tag to group monitoring parameters.

widget-
type

enum 1 Type of the widget, typically used by the UI:

 HISTOGRAM

 BAR

 GAUGE

 SLIDER

 COUNTER

 TEXTBOX

units string 1 Units for the monitoring parameter, such as megabits
per second.

OSM Information Model Open Source MANO Information Model

24

monitoring-param-value

ID Type Cardinality Description

value-type enum 1 Type of the parameter value:

 INT (default)

 DECIMAL

 STRING

numeric-
constraints

container 1 Constraints for the numbers.

See "monitoring-param-value:numeric-
constraints" on page 24.

text-constraints container 1 Constraints for the text strings.

See "monitoring-param-value:text-constraints"
on page 25.

value-integer int64 1 Current value for integer parameter.

value-decimal decimal164 1 Current value for decimal parameter, up to 4
fraction digits.

value-string string 1 Current value for the string parameter.

monitoring-param-value:numeric-constraints

ID Type Cardinality Description

min-value uint64 1 Minimum value for the parameter.

max-value uint64 1 Maximum value for the parameter.

Open Source MANO Information Model OSM Information Model

 25

monitoring-param-value:text-constraints

ID Type Cardinality Description

min-length uint8 1 Minimum string length for the parameter.

max-length uint8 1 Maximum string length for the parameter.

vnfd-monitoring-param

A list of VNFD monitoring parameters.

ID Type Cardinality Description

vnfd-id-ref leafref 1 A reference to a VNFD.

"../../../constituent-vnfd"
+ "[member-vnf-index = current()/../member-
vnf-index-ref]"
+ "/vnfd-id-ref"

vnfd-monitoring-
param-ref

leafref 1 A reference to the VNFD monitoring
parameter.

"/vnfd:vnfd-catalog/vnfd:vnfd"
+ "[vnfd:id = current()/../vnfd-id-ref]"
+ "/vnfd:monitoring-param/vnfd:id"

member-vnf-index-
ref

leafref 1 Optional reference to member-vnf within
constituent-vnfds.

"../../../constituent-vnfd/member-vnf-index"

See also

"Network Service Descriptor (nsd:nsd)" on page 11

OSM Information Model Open Source MANO Information Model

26

nsd:input-parameter-xpath

List of XPaths to parameters inside the Network Service Descriptor that can be customized
during instantiation.

Fields

ID Type Cardinality Description

xpath string 1 Xpath that specifies the element in a descriptor.

label string 1 Descriptive string.

default-value string 1 Default value for this input parameter.

See also

"Network Service Descriptor (nsd:nsd)" on page 11

Open Source MANO Information Model OSM Information Model

 27

nsd:parameter-pool

Pool of parameter values from which to pull during network service configuration.

Fields

ID Type Cardinality Description

name string 1 [Key] Name of the configuration value pool.

range container 1 Create a range of values from which to populate the pool.

See "range" on page 27.

range

Range of values from which to populate the pool

ID Type Cardinality Description

start-value uint32 1 [Required] Generated pool values start at this value.

end-value uint32 1 [Required] Generated pool values end at this value.

See also

"Network Service Descriptor (nsd:nsd)" on page 11

OSM Information Model Open Source MANO Information Model

28

nsd:service-primitive

Network service-level service primitives for the Network Service Descriptor.

Fields

ID Type Cardinality Description

name string 1 [Key] Name of the service primitive.

parameter list 0..n List of parameters for the service primitive.

See "parameter" on page 29.

parameter-group list 0..n Grouping of parameters that are logically
grouped in UI.

See "parameter-group" on page 30.

vnf-primitive-
group

list 0..n List of service primitives grouped by the VNF.

See "vnf-primitive-group" on page 31.

used-defined-
script

string 1 A user-defined script.

Open Source MANO Information Model OSM Information Model

 29

parameter

List of parameters for the service primitive.

ID Type Cardinality Description

name string 1 Name of NSD parameter.

data-type enum 1 Data type associated with the NSD parameter name:

 STRING

 INTEGER

 BOOLEAN

mandatory boolean 1 [Default false] Specifies whether this field is
mandatory.

default-value string 1 The default value for the field.

Note: This value is required to set the read-only and
hidden parameters.

parameter-
pool

string 1 NSD parameter pool name to use for this parameter.

read-only boolean 1 [Default false] The value should be dimmed in the
UI.

Note: Applies only to parameters with default
values.

hidden boolean 1 The value should be hidden in the UI.

Note: Applies only to parameters with default
values.

out boolean 1 [Default false] Specifies if this is an output of the
primitive execution

OSM Information Model Open Source MANO Information Model

30

parameter-group

Grouping of parameters that are logically grouped in UI.

ID Type Cardinality Description

name string 1 Name of parameter group.

parameter list 0..n List of parameters to the service primitive.

See "parameter-group-parameter" on page 30.

mandatory boolean 1 [Default true] Specifies whether this parameter group
is mandatory.

parameter-group-parameter

List of parameters to the service primitive.

ID Type Cardinality Description

name string 1 Name of NSD parameter.

data-type enum 1 Data type associated with the NSD parameter
name:

 STRING

 INTEGER

 BOOLEAN

mandatory boolean 1 [Default false] Specifies whether this field is
mandatory.

default-value string 1 The default value for the field.

Open Source MANO Information Model OSM Information Model

 31

ID Type Cardinality Description

parameter-
pool

string 1 NSD parameter pool name to use for this
parameter.

read-only boolean 1 [Default false] The value should be dimmed in the
UI.

Note: Applies only to parameters with default
values.

hidden boolean 1 The value should be hidden in the UI.

Note: Applies only to parameters with default
values.

out boolean 1 [Default false] Specifies if this is an output of the
primitive execution

vnf-primitive-group

List of service primitives grouped by the VNF.

ID Type Cardinality Description

member-vnf-
index-ref

uint64 1 Reference to member-vnf within constituent-
vnfds.

"../../../constituent-vnfd/member-vnf-index"

vnfd-id-ref string 1 A reference to a VNFD.

"../../../../nsd:constituent-vnfd
+ [nsd:id = current()/../nsd:id-ref]
+ /nsd:vnfd-id-ref"

OSM Information Model Open Source MANO Information Model

32

ID Type Cardinality Description

vnfd-name leafref 1 Name of the VNFD.

"/vnfd:vnfd-catalog/vnfd:vnfd"
+ "[vnfd:id = current()/../vnfd-id-ref]"
+ "/vnfd:name"

primitive list 1 A list of VNF primitives.

See "vnf-primitive-group:primitive" on page 32.

vnf-primitive-group:primitive

ID Type Cardinality Description

index uint32 1 Index of this primitive.

name string 1 Name of the primitive in the VNF primitive.

See also

"Network Service Descriptor (nsd:nsd)" on page 11

Open Source MANO Information Model OSM Information Model

 33

nsd:initial-config-primitive

Initial set of configuration primitives for the NSD to be executed when the network service
comes up.

Fields

ID Type Cardinality Description

seq uint64 1 Sequence number for the configuration
primitive.

name string 1 [Required] Name of the configuration
primitive.

user-defined-
script

string 1 A user-defined script.

parameter list 0..n List of parameters to the primitive.

See "parameter" on page 33.

parameter

List of parameters to the primitive.

ID Type Cardinality Description

name string 1 Name of the parameter.

value string 1 Value of the parameter.

See also

"Network Service Descriptor (nsd:nsd)" on page 11

OSM Information Model Open Source MANO Information Model

34

nsd:cloud-config

Configure the NSD cloud configuration parameters to include a list of public keys you want to
inject into each VM as part of network service instantiation

Fields

ID Type Cardinality Description

key-pair list 0..n Used to configure the list of public keys.

See "key-pair" on page 34.

user list 0..n List of users to be added through cloud-
config.

See "user" on page 34.

key-pair

List of public keys to be injected as part of network service instantiation.

ID Type Cardinality Description

name string 1 [Key] Name of this key pair.

key string 1 Key associated with this key pair.

user

List of users to be added through cloud-config.

ID Type Cardinality Description

name string 1 [Key] Name of the user.

user-
info

string 1 The user's real name.

Open Source MANO Information Model OSM Information Model

 35

ID Type Cardinality Description

key-
pair

string 1 Used to configure the list of public keys to be injected as
part of network service instantiation.

See "user:key-pair" on page 35.

user:key-pair

Used to configure the list of public keys to be injected as part of metwprk service instantiation.

ID Type Cardinality Description

name string 1 Name of this key pair.

key string 1 Key associated with this key pair.

See also

"vnfd:image-properties" on page 84

"Network Service Descriptor (nsd:nsd)" on page 11

OSM Information Model Open Source MANO Information Model

36

Virtual Network Function Descriptor
The virtual network function descriptor (VNFD) is a deployment template that describes the
attributes of a single VNF. The VNFD is used primarily by the VNF manager (VNFM) in the
process of VNF instantiation and lifecycle management of a VNF instance. The information
provided in the VNFD is also used by the NFV orchestrator (NFVO) to manage and orchestrate
network services and virtualized resources on the NFV infrastructure (NFVI).

The VNFD also contains:

 VNF images, which contain both the application and the Launchpad

 Connectivity (connection points and virtual links), interface, and KPI requirements that
can be used by MANO functional blocks to establish appropriate virtual links:

 Within the NFVI between its VNFC instances

 Between a VNF instance and the outside network via endpoint interfaces to the
other network functions in the network service

 Virtual deployment unit (VDU) that specifies the VM/VNFC compute, storage, and
network requirements

 Platform resource requirements, such as CPU, memory, interfaces, and network

 Special characteristics related to EPA attributes and performance capabilities

 Scaling properties

The VNFM uses a VNFD during the process of VNF instantiation and during lifecycle
management of a VNF instance. Information provided in the VNFD is also used by the NFVO to
manage and orchestrate network services and virtualized resources on the NFVI.

These VNFs are connected by Virtual Link Descriptors (VLDs). The NSD exposes a set of
connection points to enable connectivity to other network services or to the external world

Each VNF is constructed from a set of discrete VNF Components (VNFCs). There can be one or
more instance of each VNFC in the VNF. The VNFC is realized using a virtualized compute
resource from the VIM. The virtualized compute resource can be either a Virtual Machine (VM)
or a container. The VNFC includes a full description of software components to run inside the
virtualized compute resource.

The elements contained in the Virtual Deployment Unit (VDU) define the compute resource
and software components. Specifically, the VDU captures information about storage, memory,
CPU, networking resources, and the software components inside the VM.

Each VNF has a set of internal and external connection points, which abstract the actual virtual
interface used by the VM/container. The virtual interface in the VM is assigned a connection
point. Internal connection points are used to connect the VNFC internals to the VNF. The
connection points, whether internal or external, are connected using virtual links. Each virtual
link has references to two or more connection points.

Open Source MANO Information Model OSM Information Model

 37

The following diagram illustrates how VNFs are connected using internal and external virtual
links. VL1, VL2 and VL3 represent external virtual links. VL2 is used to connected the VNF1,
VNF2 and VNF3. Virtual links VL1 and VL3 are used to connect the network services.

The following diagram illustrates the high-level object model for the VNFD. The VNFD contains
lists of VDUs, internal connection points, internal virtual links, and external connection points.
The internal connection points and internal virtual links define how the VMs inside the VNF will
be connected. The external connection points are used by the NSD to chain VNFs. The VDUs
define the individual VNF components and capture information about VM image, VM flavor,
and EPA attributes.

(VNFD high-level object model)

OSM Information Model Open Source MANO Information Model

38

VNFD Enhanced Platform Awareness Elements

Enhanced Platform Awareness (EPA) is designed to improve the performance of guest virtual
machines on the hypervisors by enabling fine-grained matching of workload requirements to
platform capabilities, before the VM is launched. EPA includes the ability to:

 Launch cryptographic workload on a VM with cryptographic resources

 Launch high-bandwidth workload on a VM with DPDK capabilities

 Use vCPU to pCPU pinning and hugepages to improve NFV workload performance

 Configure PCI pass-through

EPA capabilities are captured in the VNFD Virtual Deployment Unit. The VNFD descriptor
contains elements to capture these EPA attributes.

Note: On public clouds, such as Amazon Web Services, some EPA features are not applicable.

Hugepages

The use of hugepages can improve network performance. Because fewer pages are needed
there are fewer Translation Look-aside Buffers (TLBs, high speed translation caches). Without
standard 4k pages, high TLB miss rates could affect performance.

OpenStack hw:mem_page_size flavor filter supports the allocation of hugepages. The following
page sizes are supported:

 Large (2MB or 1GB)

 Small (4K)

 Any

 2MB

 1GB

CPU Pinning

Often in OpenStack deployments, hosts are configured to permit over-commit of CPUs. If
conflict occurs between two guests VMs, there could be extended periods when the guest
vCPU is not scheduled by the host. This scenario can result in unpredictable latency, which
could affect certain types of workloads. To avoid a latency issue, the guest should be pinned to
a dedicated physical CPU.

OpenStack hw:cpu_policy and hw:cpu_threads_policy filters control the CPU pinning
behavior of the guest VMs. The hw:cpu_policy supports the shared and dedicated options. In
the shared mode, the guest CPUs are not pinned to the physical CPUs. In the dedicated mode,

Open Source MANO Information Model OSM Information Model

 39

the guest CPUs are pinned to the physical CPUs. For example, to launch a VM with vCPUs
pinned to the physical CPUs, the following flavor key must be set:

 hw:cpu_policy=dedicated

The hw:cpu_threads_policy supports avoid, separate, isolate, and prefer options. The avoid
thread policy avoids placing the guest on a host with CPU threads. The separate thread policy
places the vCPUs on different cores and avoids placing two vCPUs on two threads of the same
core. The isolate policy places each vCPU on a different core, and places no vCPUs from a
different guest on the same core. The prefer policy places the vCPUs on the same core.

Guest NUMA Awareness

When running workloads on NUMA hosts, the CPUs executing the processes should be on the
same node as the memory used. This configuration ensures that all memory accesses are local
to the NUMA node and not consumed by the limited cross-node memory bandwidth, which
adds latency to memory accesses. PCI devices are directly associated with specific NUMA nodes
for the purposes of DMA. When you use PCI device assignment, place the guest VM on the
same NUMA node as any device that is assigned to it. If the RAM/vCPUs associated with a
flavor are larger than any single NUMA node, it is important to expose NUMA topology to the
guest so that the guest operating system can schedule workloads it runs. For this setup to
work, the guest NUMA nodes must be directly associated with host NUMA nodes.

OpenStack uses the following filters to configure the guest NUMA topology:

 hw:numa_nodes

 hw:numa_mempolicy

 hw:numa_cpus

 hw:numa_mem

Example

hw:numa_nodes=NN - numa of NUMA nodes to expose to the guest.
 hw:numa_mempolicy=preferred|strict - memory allocation policy
 hw:numa_cpus.0=<cpu-list> - mapping of vCPUS N-M to NUMA node
 hw:numa_cpus.1=<cpu-list> - mapping of vCPUS N-M to NUMA node 1
 hw:numa_mem.0=<ram-size> - mapping N GB of RAM to NUMA node 0
 hw:numa_mem.1=<ram-size> - mapping N GB of RAM to NUMA node 1

The hw:numa_mempolicy is either preferred or strict. In the strict mode, the memory for the
NUMA node in the guest must come from the corresponding NUMA node on the host.

PCI Pass-Through

Guest virtual machines might need direct access to the PCI devices to avoid contention with
other VMs. In addition, PCI pass-through significantly enhances performance since the
hypervisor layer is bypassed. For example, PCI pass-through may be used to provide a guest
exclusive and direct access to a NIC or Crypto resource.

OSM Information Model Open Source MANO Information Model

40

OpenStack uses pci_pass-through:alias filter to assign a PCI device to the VM. This also
requires configuration of PCI pass-through whitelist on each compute node and PCI pass-
through alias on the controller node. The following examples show configuration of PCI pass-
through whitelist and PCI alias.

pci_pass-through_whitelist=[{ "vendor_id":"8086","product_id":"1520"}]
 pci_alias={"vendor_id":"8086", "product_id":"1520", "name":"a1"}

Data Direct I/O

Intel Data Direct I/O (DDIO) enables Ethernet server NICs. Controllers talk directly to the
processor cache without a detour through system memory. Intel DDIO makes the processor
cache the primary destination and source of I/O data rather than main memory. By avoiding
system memory, Intel DDIO reduces latency and increases system I/O. DDIO is enabled in the
BIOS of the host.

Cache Monitoring Technology

Intel Cache Monitoring Technology (CMT) allows an operating system, hypervisor, or similar
system management agent to determine the usage of cache based on applications running on
the platform. The implementation is directed at L3 cache monitoring (currently the last-level
cache in most server and client platforms).

Cache Allocation Technology

Intel Cache Allocation Technology (CAT) allows an operating system, hypervisor, or similar
system management agent to specify the amount of L3 cache (currently the last-level cache in
most server and client platforms) space an application can fill.

Note: As a hint to hardware functionality, certain features such as power management, may
override CAT settings.

Open Source MANO Information Model OSM Information Model

 41

VNFD Data Model (vnfd:vnfd)

Descriptor details for the Virtual Network Function (VNF).

The VNF includes one or more VDUs (the VM that hosts the network function), virtual links, and
connection points. Each of these components (called nodes) has specific requirements,
attributes, and capabilities, such as computational properties, that are defined in the VNF
descriptor.

Fields

ID Type Cardinality Description

id string 1 Identifier for the VNFD.

name string 1 VNFD name.

short-name string 1 VNFD short name to use as a label in the UI.

vendor string 1 Provider of the VNFD.

logo string 1 File path of the vendor-specific logo. For example,
icons/mylogo.png

The logo should be part of the VNF package.

SVG format is preferred, but PNG is supported.

Although there is no hard limit on size and dimension, a
square image under 200px by 200px is preferred.

description string 1 Description of the VNFD.

version string 1 Version of the VNFD.

vnf-
configuration

container

Information about the VNF configuration for the
management interface.

See "vnfd:vnf-configuration" on page 44.

OSM Information Model Open Source MANO Information Model

42

ID Type Cardinality Description

mgmt-
interface

container 1 Interface over which the VNF is managed.

See "vnfd:mgmt-interface" on page 51.

internal-vld list 0..n List of Internal Virtual Link Descriptors (VLD).

See "vnfd:internal-vld" on page 53.

ip-profiles list 0..n List of IP profiles. An IP profile describes the IP
characteristics for the virtual-link.

See "vnfd:ip-profiles" on page 57.

connection-
point

list 0..n The list for external connection points.

See "vnfd:connection-point" on page 59.

vdu list 0..n List of virtual deployment units (VDUs).

See "VDU Data Model (vnfd:vdu)" on page 61.

vdu-
dependency

list 0..n List of VDU dependencies, from which the orchestrator
determines the order of startup for VDUs.

See "vnfd:vdu-dependency" on page 95.

service-
function-
chain

enum 1 Type of node in the service function chaining (SFC)
architecture:

 UNAWARE (default)

 CLASSIFIER: Function that classifies packets based
on contents, and optionally local policies, such as
subscriber aware.

 SF: A service function that is responsible for
specific treatment of received packets.

 SFF: Service function forwarder delivers traffic
received from the SFC network forwarder to one
or more connected service functions through
information carried in the SFC header.

Open Source MANO Information Model OSM Information Model

 43

ID Type Cardinality Description

service-
function-type

string 1 Type of service function. This field is temporarily set to
string data type for ease of use.

Note: On the OpenDaylight platform, this value must
map to a service function type to support VNFFG.

monitoring-
param

list 0..n List of monitoring parameters for the VNF.

See "vnfd:monitoring-param" on page 96.

placement-
groups

list 0..n Placement group construct to define the compute
resource placement strategy in cloud environment.

See "vnfd:placement-groups" on page 102.

See also

"vnfd.yang Model" on page 139

OSM Information Model Open Source MANO Information Model

44

vnfd:vnf-configuration

Information about the VNF configuration for the management interface.

Note: If the network service contains multiple instances of the same VNF, each VNF instance
may have a different configuration.

Fields

ID Type Cardinality Description

config-method choice 1 Defines the configuration method for the VNF.

See "config-method" on page 45.

config-access container 1 IP address to be used to configure this VNF.

See "config-access" on page 46.

config-
attributes

container 1 Miscellaneous input parameters to be considered
while processing the NSD to apply configuration.

See "config-attributes" on page 46.

service

-primitive

list 0..n List of service primitives supported by the
configuration agent for this VNF.

See "service-primitive" on page 46.

initial-config-
primitive

list 0..n Initial set of configuration primitives.

See "initial-config-primitive" on page 48.

config-
template

string 1 Configuration template for each VNF.

Open Source MANO Information Model OSM Information Model

 45

config-method

ID Type Cardinality Description

script container 1 Use a custom script for configuring the VNF.

Note: This script is executed in the Launchpad. All required
dependencies for the script must be available in the Launchpad
system before the script runs.

See "config-method:script" on page 45.

juju container 1 Use Juju for configuring the VNF.

See "config-method:juju" on page 45.

config-method:script

Script container for configuring the VNF. This script will be executed in the Launchpad, and all
required dependencies for the script should be available in the Launchpad system.

ID Type Cardinality Description

script-type enum 1 Script type to use:

 BASH

 EXPECT

config-method:juju

Juju container for configuring the VNF.

ID Type Cardinality Description

charm string 1 Juju charm to use to use with the VNF.

OSM Information Model Open Source MANO Information Model

46

config-access

VNF configuration access.

ID Type Cardinality Description

mgmt-ip-
address

inet:ip-
address

1 IP address to be used to configure this VNF.

Note: This parameter is optional if it is possible to
dynamically resolve the IP.

username string 1 User name for configuration.

password string 1 Password for configuration access authentication.

config-attributes

Miscellaneous input parameters to be considered while processing the NSD.

ID Type Cardinality Description

config-
priority

uint64 1 Order of configuration priority to be applied to each
VNF in this network service.

A low number takes precedence over a high number.

config-
delay

uint64 1 Wait time (in seconds) before applying the
configuration to this VNF.

service-primitive

List of primitives supported by the configuration agent for this VNF.

ID Type Cardinality Description

name string 1 [Key] Name of the config primitive.

Open Source MANO Information Model OSM Information Model

 47

ID Type Cardinality Description

parameter list 0..n List of parameters to the configuration primitive.

See "service-primitive:parameter" on page 47

user-defined-
script

string 1 A user-defined script.

If a script is defined, the script will be executed
using bash.

service-primitive:parameter

List of parameters to the primitive.

ID Type Cardinality Description

name string 1 Name of NSD parameter.

data-type enum 1 Data type associated with the NSD parameter name:

 STRING

 INTEGER

 BOOLEAN

mandatory boolean 1 [Default false] Specifies whether this field is
mandatory.

default-value string 1 The default value for the field.

Note: This value is required to set the read-only and
hidden parameters.

parameter-
pool

string 1 NSD parameter pool name to use for this
parameter.

OSM Information Model Open Source MANO Information Model

48

ID Type Cardinality Description

read-only boolean 1 [Default false] The value should be dimmed in the
UI.

Note: Applies only to parameters with default
values.

hidden boolean 1 The value should be hidden in the UI.

Note: Applies only to parameters with default
values.

out boolean 1 [Default false] Specifies if this is an output of the
primitive execution.

initial-config-primitive

Initial set of configuration primitives.

ID Type Cardinality Description

seq uint64 1 [Key] Sequence number for the configuration
primitive.

primitive-type choice 1 Primitive type to use.

See "initial-config-primitive:primitive-type" on
page 49

config-
primitive-ref

leafref 1 Reference to a config primitive name.

Note: The referenced config primitive should
have all the input parameters predefined
either with default values or dependency
references

Open Source MANO Information Model OSM Information Model

 49

initial-config-primitive:primitive-type

ID Type Cardinality Description

name string 1 Name of the configuration primitive.

parameter list 0..n List of parameters to the configuration primitive.

See "initial-config-primitive:parameter" on page 49.

user-
defined-
script

string 1 A user-defined script

initial-config-primitive:parameter

ID Type Cardinality Description

name string 1 Name of the parameter.

value string 1 Value of the parameter.

See also

"vnfd:mgmt-interface" on page 51

"VNFD Data Model (vnfd:vnfd)" on page 41

Open Source MANO Information Model OSM Information Model

 51

vnfd:mgmt-interface

Interface over which the VNF is managed.

Fields

ID Type Cardinality Description

endpoint-type choice 1 Specifies the type of management endpoint to
use.

See "endpoint-type" on page 51

port inet:port-
number

1 Port number for the management interface.

dashboard-
params

container 1 Parameters for the VNF dashboard of the
management interface.

See "dashboard-params" on page 52.

endpoint-type

Specifies the type of management endpoint to use:

ID
Type

Cardinality Description

ip-
address

inet:ip-
address

1 Use static IP address for managing the VNF.

vdu-id leafref 1 Use the default management interface on this VDU:

 "../../vdu/id".

cp leafref 1 Use the IP address for the VNFD associated with this
connection point endpoint:

 "../../connection-point/name"

OSM Information Model Open Source MANO Information Model

52

dashboard-params

Parameters for the VNF dashboard of the management interface.

ID
Type

Cardinality Description

path string 1 The HTTP path for the dashboard.

https boolean 1 [Default false] Choose HTTPS instead of HTTP.

port uint16 1 The HTTP port for the dashboard.

See also

"VNFD Data Model (vnfd:vnfd)" on page 41

Open Source MANO Information Model OSM Information Model

 53

vnfd:internal-vld

List of internal Virtual Link Descriptors (VLDs). Internal VLDs describe the basic topology of the
connectivity—such as E-LAN— between internal VNF Components (VNFC) within the system.

Fields

ID Type Cardinality Description

id string 1 Identifier for the internal VLD.

name string 1 Name of the internal VLD.

short-name string 1 Short name for the internal VLD to display as
a label in the UI.

vendor string 1 Provider of the VLD.

description string 1 Description of the internal VLD.

version string 1 Version of the VLD.

type enum 1 Type of virtual link:

ELAN – A multipoint service that connects a
set of VDUs.

root-bandwidth uint64 1 For ELAN this is the aggregate bandwidth.

leaf-bandwidth uint64 1 For ELAN this is the bandwidth of branches.

internal-
connection-point

list 0..n List of internal connection points in this VLD:

See "internal-connection-point" on page 54

OSM Information Model Open Source MANO Information Model

54

ID Type Cardinality Description

virtual-connection-
points

list 0..n A list of virtual connection points associated
with the virtual link.

These connection points are not directly
associated with VDUs.

See "virtual-connection-points" on page 55.

provider-network container
1

Container for the provider network.

See "provider-network" on page 56

init-params choice 1 Extra parameters for VLD instantiation.

See "init-params" on page 56.

internal-connection-point

List of internal connection points in this VLD:

ID Type Cardinality Description

id-ref leafref 1 Reference to the internal connection point
ID:

"../../../vdu/internal-connection-point/id"

Open Source MANO Information Model OSM Information Model

 55

virtual-connection-points

List of virtual-connection points associated with this virtual Link. These connection points are
not directly associated with any VDUs.

ID Type Cardinality Description

name string 1 Name of the connection point.

id string 1 Identifier for the internal connection points.

short-name string 1 Short name of the connection point to display as a label
in the UI.

type enum 1 Type of connection point:

VPORT: Virtual Port

port-
security-
enabled

boolean 1 Enables or disables the port security for the connection-
point.

When set to True, the resource orchestrator passes the
value to the VIM when the connection-point is created to
filter traffic.

Note: This value is supported on OpenStack only.

static-ip-
address

inet:ip-
address

1 Static IPv4 or IPv6 address for the internal/external
connection point in the VNFD. When you instantiate a
VNF, the static IP for the connection point is passed to
the VIM.

associated-
cps

list 0..n List of connection points associated with virtual
connection point.

"../../internal-connection-point/id-ref"

OSM Information Model Open Source MANO Information Model

56

provider-network

Container for the provider network.

ID Type Cardinality Description

physical-
network

string 1 Name of the physical network on which the provider
network is built.

overlay-type enum 1 Identifies the type of the overlay network, which is a
virtual network that is built on top of an existing network
and is supported by its infrastructure. Supported values
are:

 LOCAL — Provider network implemented in a
single compute node.

 FLAT — Provider network shared by all tenants.

 VLAN — Provider network implemented using
802.1Q tagging.

 VXLAN — Provider networks implemented using
RFC 7348.

 GRE — Provider networks implemented using GRE
tunnels.

segmentation-
id

uint32 1 Segmentation ID

init-params

Extra parameters for VLD instantiation.

ID Type Cardinality Description

vim-network-
name

string
1

Name of pre-provisioned network in the VIM
(cloud) account.

ip-profile-ref string
1

Named reference to an ip-profile object.

Open Source MANO Information Model OSM Information Model

 57

vnfd:ip-profiles

List of IP profiles that describe the IP characteristics for the virtual link.

Fields

ID Type Cardinality Description

name string 1 Name of the IP profile.

description string 1 Description of the IP profile.

ip-profile-params container 1 Information about the IP profile.

See "ip-profile-params" on page 57.

ip-profile-params

Information about the IP profile.

ID Type Cardinality Description

ip-version enum 1 [Default IPv4] Version of the Internet Protocol
used.

subnet-address inet:ip-prefix 1 Subnet IP prefix associated with this IP profile.

gateway-
address

inet:ip-
address

1 IP address of the default gateway associated
with this IP profile.

security-group string 1 Name of the security group.

dns-server list 0..n List of DNS servers associated with this IP
profile.

See "ip-profile-params:dns-server" on page 58.

OSM Information Model Open Source MANO Information Model

58

ID Type Cardinality Description

dhcp-params container 1 Container for DHCP parameters.

See "ip-profile-params:dhcp-params" on page
58.

subnet-prefix-
pool

string 1 VIM-specific reference to pre-created subnet
prefix.

ip-profile-params:dns-server

List of DNS servers associated with this IP profile.

ID Type Cardinality Description

address inet:ip-address 1 List of DNS servers associated with this IP profile.

ip-profile-params:dhcp-params

Container for DHCP parameters.

ID Type Cardinality Description

enabled boolean 1 [Default true] Indicates if DHCP is enabled.

start-
address

inet:ip-
address

1 Start IP address of the IP address range associated
with DHCP domain.

count uint32 1 Size of the DHCP pool associated with DHCP domain.

Open Source MANO Information Model OSM Information Model

 59

vnfd:connection-point

List of external connection points, in which each VNF:

 Has one or more points that are used to connect a VNF to other VNFs or to external
networks

 Exposes these connection points to the orchestrator (NFVO)

The orchestrator constructs network services by joining the connection points between
different VNFs.

The orchestrator uses VLDs and VNFFGs at the network service level to construct network
services.

Fields

ID Type Cardinality Description

name string 1 Name of the connection point.

id string 1 Identifier for the internal connection points.

short-
name

string 1 Short name of the connection point to display as a label in
the UI.

type enum 1 Type of connection point:

VPORT: Virtual Port

port-
security-
enabled

boolean 1 Enables or disables the port security for the connection-
point.

When set to True, the resource orchestrator passes the
value to the VIM when the connection-point is created to
filter traffic.

Note: This value is supported on OpenStack only.

static-ip-
address

inet:ip-
address

1 Static IPv4 or IPv6 address for the internal/external
connection point in the VNFD. When you instantiate a
VNF, the static IP for the connection point is passed to the
VIM.

OSM Information Model Open Source MANO Information Model

60

See also

"nsd:ip-profiles" on page 19

"VNFD Data Model (vnfd:vnfd)" on page 41

Open Source MANO Information Model OSM Information Model

 61

VDU Data Model (vnfd:vdu)

A VDU is a basic part of VNF. VDUs are virtual machines that host the network function, such
as:

 Virtual machine specification

 Computation properties (RAM size, disk size, memory page size, number of CPUs,
number of cores per CPU, number of threads per core)

 Storage requirements

 Initiation and termination scripts

 High availability redundancy model

 Scale out/scale in limits

Fields

ID Type Cardinality Description

id string 1 Unique identifier for the VDU.

name string 1 Unique name for the VDU.

description string 1 Description of the VDU.

count uint64 1 Number of instances of the VDU.

mgmt-vpci string 1 Specifies the virtual PCI address, expressed in the
following format dddd:dd:dd.d. For example
0000:00:12.0.

 This information can be used to pass as metadata
during the VM creation.

vm-flavor container 1 Flavor of the virtual machine (VM) instance.

See "vnfd:vm-flavor" on page 67.

guest-epa container 1 EPA attributes for the guest operating system.

See "vnfd:guest-epa" on page 68.

OSM Information Model Open Source MANO Information Model

62

ID Type Cardinality Description

vswitch-epa container 1 EPA attributes for Open vSwitch.

See "vnfd:vswitch-epa" on page 73.

hypervisor-
epa

container 1 EPA attributes for the hypervisor.

See "vnfd:hypervisor-epa" on page 74.

host-epa container 1 EPA attributes for the host operating system.

See "vnfd:host-epa" on page 75.

alarm list 0..n A list of alarms.

See "vnfd:alarm" on page 80.

image-
properties

container 1 Image properties, such as name and checksum.

See "vnfd:image-properties" on page 84

cloud-init-
input

choice 1 Specifies how the contents of cloud-init script are
provided.

See "vnfd:cloud-init-input" on page 85.

supplemental-
boot-data

container 1 Container for custom VIM metadata.

Note: This container is provided for convenience. You
should use cloud-init ("vnfd:image-properties" on
page 84 and) and VCA ("vnfd:vnf-configuration" on
page 44 and "nsd:initial-config-primitive" on page 33)
to define VNF configuration.

See "vnfd:supplemental-boot-data" on page 86.

internal-
connection-
point

list 0..n List for internal connection points.

See "vnfd:internal-connection-point" on page 87.

Open Source MANO Information Model OSM Information Model

 63

ID Type Cardinality Description

internal-
interface

list 0..n List of internal interfaces for the VNF.

See "vnfd:internal-interface" on page 88.

external-
interface

list 0..n List of external interfaces for the VNF.

See "vnfd:external-interface" on page 90.

volumes list 0..n List of disk-volumes to be attached to VDU.

See "vnfd:volumes" on page 92.

Schema

 list vdu {
 description "List of Virtual Deployment Units";
 key "id";

 leaf id {
 description "Unique id for the VDU";
 type string;
 }

 leaf name {
 description "Unique name for the VDU";
 type string;
 }

 leaf description {
 description "Description of the VDU.";
 type string;
 }

 leaf count {
 description "Number of instances of VDU";
 type uint64;
 }

 leaf mgmt-vpci {
 description
 "Specifies the virtual PCI address. Expressed in
 the following format dddd:dd:dd.d. For example
 0000:00:12.0. This information can be used to
 pass as metadata during the VM creation.";
 type string;
 }

 uses manotypes:vm-flavor;
 uses manotypes:guest-epa;
 uses manotypes:vswitch-epa;
 uses manotypes:hypervisor-epa;
 uses manotypes:host-epa;

OSM Information Model Open Source MANO Information Model

64

 list alarm {
 key "alarm-id";

 uses manotypes:alarm;
 }

 uses manotypes:image-properties;

 choice cloud-init-input {
 description
 "Indicates how the contents of cloud-init script are provided.
 There are 2 choices - inline or in a file";

 case inline {
 leaf cloud-init {
 description
 "Contents of cloud-init script, provided inline, in cloud-config
format";
 type string;
 }
 }

 case filename {
 leaf cloud-init-file {
 description
 "Name of file with contents of cloud-init script in cloud-config
format";
 type string;
 }
 }
 }

 uses manotypes:supplemental-boot-data;

 list internal-connection-point {
 key "id";
 description
 "List for internal connection points. Each VNFC
 has zero or more internal connection points.
 Internal connection points are used for connecting
 the VNF components internal to the VNF. If a VNF
 has only one VNFC, it may not have any internal
 connection points.";

 uses common-connection-point;
 }

 list internal-interface {
 description
 "List of internal interfaces for the VNF";
 key name;

 leaf name {
 description
 "Name of internal interface. Note that this
 name has only local significance to the VDU.";
 type string;
 }

 leaf vdu-internal-connection-point-ref {
 type leafref {
 path "../../internal-connection-point/id";

Open Source MANO Information Model OSM Information Model

 65

 }
 }
 uses virtual-interface;
 }

 list external-interface {
 description
 "List of external interfaces for the VNF.
 The external interfaces enable sending
 traffic to and from VNF.";
 key name;

 leaf name {
 description
 "Name of the external interface. Note that
 this name has only local significance.";
 type string;
 }

 leaf vnfd-connection-point-ref {
 description
 "Name of the external connection point.";
 type leafref {
 path "../../../connection-point/name";
 }
 }
 uses virtual-interface;
 }

 list volumes {
 key "name";

 leaf name {
 description "Name of the disk-volumes, e.g. vda, vdb etc";
 type string;
 }

 uses manotypes:volume-info;
 }
 }

See also

"VNFD Data Model (vnfd:vnfd)" on page 41

Open Source MANO Information Model OSM Information Model

 67

vnfd:vm-flavor

Flavor is an alternative term for a VM instance type.

Fields

ID Type Cardinality Description

vcpu-count uint16 1 Number of VCPUs for the VM.

memory-mb uint64 1 Amount of memory in MB to allocate to the VM.

storage-gb uint64 1 Amount of disk space in GB to allocate to the VM.

See also

"VDU Data Model (vnfd:vdu)" on page 61

"VNFD Data Model (vnfd:vnfd)" on page 41

OSM Information Model Open Source MANO Information Model

68

vnfd:guest-epa

EPA attributes for the guest operating system.

Fields

ID Type Cardinality Description

trusted-
execution

boolean 1 If set to true, indicates this VM should be allocated from
trusted pool.

mempage-
size

enum 1 Memory page allocation size for the VM:

 LARGE: Requires hugepages (either 2MB or 1GB)

 SMALL: Doesn't require hugepages

 SIZE_2MB: Requires 2MB hugepages

 SIZE_1GB: Requires 1GB hugepages

 PREFER_LARGE: Prefers hugepages

Note: If a VM requires hugepages, choose LARGE or
SIZE_2MB or SIZE_1GB. If the VM prefers hugepages,
choose PREFER_LARGE.

cpu-
pinning-
policy

enum 1 Defines the association between virtual CPUs in the guest
and the physical CPUs in the host:

 DEDICATED: Virtual CPUs are pinned to physical
CPUs

 SHARED: Multiple VMs may share the same
physical CPUs.

 ANY: [Default] Any policy is acceptable for the VM

Open Source MANO Information Model OSM Information Model

 69

ID Type Cardinality Description

cpu-
thread-
pinning-
policy

enum 1 Defines how to place the guest CPUs when the host
supports hyper threads:

 AVOID: Avoids placing a guest on a host with
threads.

 SEPARATE: Places vCPUs on separate cores, and
avoids placing two vCPUs on two threads of same
core.

 ISOLATE: Places each vCPU on a different core, and
places no vCPUs from a different guest on the same
core.

 PREFER: Attempts to place vCPUs on threads of the
same core.

pcie-device list 0..1 List of PCIE passthrough devices.

See "pcie-device" on page 70

numa-
unaware

empty Details about the numa-node-policy are null.

numa-
node-
policy

container 1 Defines NUMA topology of the guest, specifying if the
guest should run on a host with one numa node or
multiple NUMA nodes.

Example: A guest might need 8 VCPUs and 4 GB of
memory with the VCPUs and memory distributed across
multiple NUMA nodes. In this scenario, NUMA node 1
could run with 6 VCPUs and 3GB, and NUMA node 2
could run with 2 vcpus and 1GB.

See "numa-node-policy" on page 70.

OSM Information Model Open Source MANO Information Model

70

pcie-device

List of PCIE passthrough devices.

ID Type Cardinality Description

device-id string 1 Device identifier.

count uint64 1 Number of devices to attach to the VM.

numa-node-policy

Defines NUMA topology of the guest.

ID Type Cardinality Description

node-cnt uint16 1 Number of NUMA nodes to expose to the VM.

mem-
policy

enum 1 Defines how to allocate memory in a multi-node scenario:

 STRICT: The memory must be allocated from the
memory attached to the NUMA node.

 PREFERRED: The memory should be allocated from
the memory attached to the NUMA node

node list 0..n List of NUMA nodes.

See "numa-node-policy:node" on page 70.

numa-node-policy:node

ID Type Cardinality Description

id uint64 1 NUMA node identification. Typically 0 or 1.

Open Source MANO Information Model OSM Information Model

 71

ID Type Cardinality Description

vpcu list 0..n List of VPCUs to allocate on this NUMA node.

See "numa-node-policy:node:vcpu" on page 71.

memory-mb uint64 1 Memory size in MB for this NUMA node.

num-cores uint8 1 Number of cores.

paired-
threads

container 1 Container for paired threads.

See "numa-node-policy:node:paired-threads" on
page 71.

num-threads uint8 1 OpenMANO NUMA type selection.

numa-node-policy:node:vcpu

ID Type Cardinality Description

id uint64 1 List of VCPUs IDs to allocate on this NUMA node.

numa-node-policy:node:paired-threads

ID Type Cardinality Description

num-paired-
threads

uint8 1 Number of paired-threads.

paired-
thread-ids

list 0..n List of thread paired to use in case of paired thread
NUMA.

See "numa-node-policy:node:paired-threads:paired-
thread-ids" on page 72.

OSM Information Model Open Source MANO Information Model

72

numa-node-policy:node:paired-threads:paired-thread-ids

ID Type Cardinality Description

thread-a uint8 1 Thread ID

thread-b uint8 1 Thread ID

See also

"VDU Data Model (vnfd:vdu)" on page 61

"VNFD Data Model (vnfd:vnfd)" on page 41

Open Source MANO Information Model OSM Information Model

 73

vnfd:vswitch-epa

EPA attributes for Open vSwitch.

Fields

ID Type Cardinality Description

ovs-acceleration enum 1 Defines the Open vSwitch acceleration mode:

 MANDATORY: OVS acceleration is
required.

 PREFERRED: OVS acceleration is
preferred.

 DISABLED: OVS acceleration is disabled.

ovs-offload enum 1 Defines Open vSwitch hardware offload mode:

 MANDATORY: OVS offload is required.

 PREFERRED: OVS offload is preferred.

 DISABLED: OVS offload is disabled.

See also

"VDU Data Model (vnfd:vdu)" on page 61

"VNFD Data Model (vnfd:vnfd)" on page 41

OSM Information Model Open Source MANO Information Model

74

vnfd:hypervisor-epa

EPA attributes for the hypervisor.

Fields

ID Type Cardinality Description

type enum 1 Specifies the type of
hypervisor:

Value can be:

 KVM

 XEN

version string 1 Version of the hypervisor.

See also

"VDU Data Model (vnfd:vdu)" on page 61

"VNFD Data Model (vnfd:vnfd)" on page 41

Open Source MANO Information Model OSM Information Model

 75

vnfd:host-epa

Specifies the host-level EPA attributes.

Fields

ID Type Cardinality Description

cpu-model enum 1 Host CPU model.

Supported values:

 PREFER_WESTMERE

 REQUIRE_WESTMERE

 PREFER_SANDYBRIDGE

 REQUIRE_SANDYBRIDGE

 PREFER_IVYBRIDGE

 REQUIRE_IVYBRIDGE

 PREFER_HASWELL

 REQUIRE_HASWELL

 PREFER_BROADWELL

 REQUIRE_BROADWELL

 PREFER_NEHALEM

 REQUIRE_NEHALEM

 PREFER_PENRYN

 REQUIRE_PENRYN

 PREFER_CONROE

 REQUIRE_CONROE

 PREFER_CORE2DUO

 REQUIRE_CORE2DUO

OSM Information Model Open Source MANO Information Model

76

ID Type Cardinality Description

cpu-arch enum 1 Host CPU architecture.

Supported values:

 PREFER_X86

 REQUIRE_X86

 PREFER_X86_64

 REQUIRE_X86_64

 PREFER_I686

 REQUIRE_I686

 PREFER_IA64

 REQUIRE_IA64

 PREFER_ARMV7

 REQUIRE_ARMV7

 PREFER_ARMV8

 REQUIRE_ARMV8

cpu-vendor enum 1 Host CPU vendor.

Supported values:

 PREFER_INTEL

 REQUIRE_INTEL

 PREFER_AMD

 REQUIRE_AMD

cpu-socket-count uint64 1 Number of sockets on the host.

cpu-core-count uint64 1 Number of cores on the host.

cpu-core-thread-
count

uint64 1 Number of threads per cores on the host.

Open Source MANO Information Model OSM Information Model

 77

ID Type Cardinality Description

cpu-feature list 0..1 List of CPU features.

See "cpu-feature" on page 77

om-cpu-model-string
string

1 OpenMano CPU model string.

om-cpu-feature list 0..n OpenMano CPU features.

See "om-cpu-feature" on page 79.

cpu-feature

List of CPU features.

ID Type Cardinality Description

OSM Information Model Open Source MANO Information Model

78

ID Type Cardinality Description

feature enum 1 Enumeration for CPU features:
 AES: CPU supports advanced instruction set for AES (Advanced

Encryption Standard).

 CAT: Cache Allocation Technology (CAT) allows an
operating system, hypervisor, or similar system
management agent to specify the amount of L3 cache
(currently the last-level cache in most server and client
platforms) space an application can fill.

Note: As a hint to hardware functionality, certain
features, such as power management, may override CAT
settings.

 CMT: Cache Monitoring Technology (CMT) allows an
Operating System, Hypervisor, or similar system
management agent to determine the usage of cache
based on applications running on the platform. The
implementation is directed at L3 cache monitoring
(currently the last-level cache in most server and client
platforms).

 DDIO: Intel Data Direct I/O (DDIO) enables Ethernet server
NICs and controllers talk directly to the processor cache
without a detour via system memory. This enumeration
specifies if the VM requires a DDIO capable host.

Supported values:
 PREFER_AES

 REQUIRE_AES

 PREFER_CAT

 REQUIRE_CAT

 PREFER_CMT

 REQUIRE_CMT

 PREFER_DDIO

 REQUIRE_DDIO

 REQUIRE_VME

 PREFER_VME

 REQUIRE_DE

 PREFER_DE

 REQUIRE_PSE

 PREFER_PSE

 REQUIRE_TSC

Open Source MANO Information Model OSM Information Model

 79

om-cpu-feature

OpenMANO CPU features

ID Type Cardinality Description

feature string 1 CPU feature.

See also

"VDU Data Model (vnfd:vdu)" on page 61

"VNFD Data Model (vnfd:vnfd)" on page 41

OSM Information Model Open Source MANO Information Model

80

vnfd:alarm

Information about alarms.

Fields

ID Type Cardinality Description

alarm-id string 1 Reserved field for the identifier assigned by the VIM
provider.

name string 1 A human-readable string to identify the alarm.

description string 1 Description of the alarm.

vdur-id string 1 Identifier of the VDU record (VDUR) associated with this
alarm.

actions container 1 Actions related to the alarm.

See "actions" on page 82.

repeat boolean 1 [Default true] Indicates whether the alarm should emit
repeatedly after the associated threshold has been
crossed.

enabled boolean 1 [Default true] Indicates whether the alarm has been
enabled or disabled.

severity enum 1 Defines a measure of the important or urgency of the
alarm:

 LOW

 MODERATE

 CRITICAL

Open Source MANO Information Model OSM Information Model

 81

ID Type Cardinality Description

metric enum 1 Defines metric types that can be tracked by this alarm.

 CPU_UTILIZATION

 MEMORY_UTILIZATION

 STORAGE_UTILIZATION

statistic enum 1 Defines type of statistic to use to measure a metric,
which determines threshold crossing for an alarm.

 AVERAGE

 MINIMUM

 MAXIMUM

 COUNT

 SUM

operation enum 1 Defines the relational operator to use if an alarm should
be triggered when the metric statistic goes above or
below a specified threshold value.

 GE — Greater than or equal to

 LE — Less than or equal to

 GT — Greater than

 LT — Less than

 EQ — Equal

value decimal164 1 Defines the threshold (up to 4 fraction digits) that, if
crossed, will trigger the alarm.

period uint32 1 Defines the length of time (seconds) for which metric
data are collected to evaluate the chosen statistic.

OSM Information Model Open Source MANO Information Model

82

ID Type Cardinality Description

evaluation uint32 1 Number of samples of the metric statistic used to
evaluate threshold crossing.

Each sample or evaluation is equal to the metric statistic
obtained for a given period.

Note: This value can be used to mitigate spikes in the
metric that may skew the statistic of interest.

actions

ID Type Cardinality Description

ok list 0..n See "actions" on page 82

insufficient-
data

list 0..n See "actions:insufficient-data" on page 83

alarm list 0..n See "actions:alarm" on page 83

actions:ok

ID Type Cardinality Description

url string 1 [Key]

Open Source MANO Information Model OSM Information Model

 83

actions:insufficient-data

ID Type Cardinality Description

url string 1 [Key]

actions:alarm

ID Type Cardinality Description

url string 1 [Key]

See also

"VDU Data Model (vnfd:vdu)" on page 61

"VNFD Data Model (vnfd:vnfd)" on page 41

OSM Information Model Open Source MANO Information Model

84

vnfd:image-properties

Provides image name and checksum file of a cloud instance (VM) during launch.

Fields

ID Type Cardinality Description

image string 1 Image name for the software image.

If the image name is found within the VNF package, it will be
uploaded to all cloud accounts during the onboarding
process. Otherwise, the image must be added to the cloud
account with the same name as entered in this field.

image-
checksum

string 1 Image md5sum for the software image. The md5sum, if
provided, along with the image name, uniquely identifies an
image uploaded to the VIM.

See also

"VDU Data Model (vnfd:vdu)" on page 61

Open Source MANO Information Model OSM Information Model

 85

vnfd:cloud-init-input

Specifies how the contents of cloud-init script are provided.

Fields

ID Type Cardinality Description

cloud-
init

string 1 Provide contents of cloud-init script inline, in cloud-config
format.

cloud-
init-
file

string 1 Pass the cloud-init script as a separate file to the resource
orchestrator, outside the descriptor, in cloud-config format. The
VNF package may reference the cloud-init file by name in the
vnfd:vdu descriptor.

See also

"VDU Data Model (vnfd:vdu)" on page 61

OSM Information Model Open Source MANO Information Model

86

vnfd:supplemental-boot-data

Grouping for VIM data lets you pass additional data to the VIM to enable a VDU to bootstrap
itself.

Note: This container is provided for convenience. You should use cloud-init ("vnfd:image-properties" on
page 84 and "vnfd:cloud-init-input" on page 85) and VCA ("vnfd:vnf-configuration" on page 44 and
"nsd:initial-config-primitive" on page 33) to define VNF configuration.

Fields

ID Type Cardinality Description

config-
file

list 0..n List of configuration files to be written on an additional drive.

These files reside in the cloud-init directory described in
Launchpad Package Formats in VNF Configuration &
Integration.

See "config-file" on page 86.

boot-
data-
drive

boolean 1 [Default false] Specifies whether the VIM should implement
an additional drive to host user config data (represented by
cloud-init or cloud-init-file in the YANG model) and metadata.

config-file

List of configuration files to be written on an additional drive.

ID Type Cardinality Description

source string 1 Name of the configuration file.

dest string 1 Full path of the destination on the
guest.

See also

"vnfd:image-properties" on page 84 and "VDU Data Model (vnfd:vdu)" on page 61

Open Source MANO Information Model OSM Information Model

 87

vnfd:internal-connection-point

List of internal connection points. Each VNFC has zero or more internal connection points.
Internal connection points are used for connecting the VNF components internal to the VNF. If
a VNF has only one VNFC, it may not have any internal connection points.

Fields

ID Type Cardinality Description

name string 1 Name of the connection point.

id string 1 [Key] Identifier for the internal connection
points.

short-name string 1 Short name to use as a label in the UI.

type enum 1 Type of connection point:

VPORT: Virtual Port

port-security-
enabled

boolean Specifies whether to enable port security
for the port.

static-ip-address inet:ip-
address

1 Static IP address for the connection point

See also

"VDU Data Model (vnfd:vdu)" on page 61

"VNFD Data Model (vnfd:vnfd)" on page 41

OSM Information Model Open Source MANO Information Model

88

vnfd:internal-interface

List of internal interfaces for virtual network functions, which enable intra-VNF traffic.

Fields

ID Type Cardinality Description

name string 1 [Key] Name of the internal interface
inside the VDU.

Note: This name has only local
significance to the VDU.

vdu-internal-connection-
point-ref

leafref 1 Reference to an internal connection
point:

"../../internal-connection-point/id"

virtual-interface container 1 Container for the virtual interface
properties.

See "virtual-interface" on page 89.

Open Source MANO Information Model OSM Information Model

 89

virtual-interface

Container for the virtual interface properties.

ID Type Cardinality Description

type enum 1 Specifies the type of virtual interface between VM and
host:

 VIRTIO: [Default] Use the traditional VIRTIO
interface

 PCI-PASSTHROUGH: Use PCI-PASSTHROUGH
interface

 SR-IOV: Use SR-IOV interface

 E1000 : Emulate E1000 interface

 RTL8139 : Emulate RTL8139 interface

 PCNET : Emulate PCNET interface

 OM-MGMT: Used to specify OpenMANO
management internal-connection type

vpci string 1 Specifies the virtual PCI address in format dddd:dd:dd.d.
For example:

 0000:00:12.0

Note: This information can be used to pass as metadata
during VM creation.

bandwidth uint64 1 Specifies the aggregate bandwidth requirement for the
NIC.

See also

"VDU Data Model (vnfd:vdu)" on page 61

"VNFD Data Model (vnfd:vnfd)" on page 41

OSM Information Model Open Source MANO Information Model

90

vnfd:external-interface

List of external interfaces for virtual network functions, which enable intra-VNF traffic.

Fields

ID Type Cardinality Description

name string 1 [Key] Name of the external interface inside
the VDU.

Note: This name has only local significance
to the VDU.

vnfd-connection-
point-ref

leafref 1 Reference to an external connection point:

"../../../connection-point/name"

virtual-interface container 1 Container for the virtual interface
properties.

Open Source MANO Information Model OSM Information Model

 91

virtual-interface

Container for the virtual interface properties.

ID Type Cardinality Description

type enum 1 Specifies the type of virtual interface between VM and
host:

 VIRTIO: [Default] Use the traditional VIRTIO
interface

 PCI-PASSTHROUGH: Use PCI-PASSTHROUGH
interface

 SR-IOV: Use SR-IOV interface

 E1000 : Emulate E1000 interface

 RTL8139 : Emulate RTL8139 interface

 PCNET : Emulate PCNET interface

 OM-MGMT: Used to specify OpenMANO
management internal-connection type

vpci string 1 Specifies the virtual PCI address in format dddd:dd:dd.d.
For example:

 0000:00:12.0

Note: This information can be used to pass as metadata
during VM creation.

bandwidth uint64 1 Specifies the aggregate bandwidth requirement for the
NIC.

See also

"VDU Data Model (vnfd:vdu)" on page 61

"VNFD Data Model (vnfd:vnfd)" on page 41

OSM Information Model Open Source MANO Information Model

92

vnfd:volumes

Defines disk volumes to be attached to the VDU, such as when a VNF requires multiple disks to
boot the virtual machine.

Note: If you use vnfd:volumes, do not specify the top-level image properties in vnfd:vdu. The
data required to instantiate a virtual machine is derived from the volumes descriptor. This
means that the image and image-checksum fields specified in vnfd:volumes replace the same
fields in the vnfd:vdu descriptor.

If you have a descriptor that uses the vnfd:vdu image fields and you want to add a second
volume, create a volume to represent the vnfd:vdu image fields, leave the vnfd:vdu image
fields blank, and add a second volume.

Volumes are automatically deleted when the VDU is destroyed.

View a list of volumes by volume-id on the Launchpad UI Compute Topology page.

Fields

ID Type Cardinality Description

name string 1 [Required] Name of the disk volumes.

You must specify the appropriate device name
("dev/NAME") of the block device exposed within the VM,
such as "vda", "vdb", "sda", "sdb", and so on.

description string 1 Description of the volume.

size uint64 1 [Required] Size of the volume, in GB.

volume-
source

choice 1 [Required] Defines the source of the volume.

Supported values:

 ephemeral – Empty disk

 image – Reference to the image to use for the
volume

See "volume-source" on page 93.

Open Source MANO Information Model OSM Information Model

 93

ID Type Cardinality Description

device_bus enum 1 [Required] Type of disk-bus on which this disk is exposed to
the guest operating system:

 IDE

 VIRTIO

 SCSI

device_type enum 1 [Required] Type of device as exposed to the guest
operating system:

 DISK

 CDROM (not supported by Brocade vCPE CAL)

volume-source

Specify either ephemeral or image or volume-ref as the volume source.

ID Type Cardinality Description

ephemeral empty 1 Blank volume.

Note: ephemeral is not a supported volume source on
Brocade vCPE VIM.

image string 1 Image name of the software image to use.

If the image name is found within the VNF package, it will
be uploaded to all cloud accounts during the onboarding
process. Otherwise, the image must be added to the VIM
account with the same name as entered in this field.

OSM Information Model Open Source MANO Information Model

94

ID Type Cardinality Description

image-
checksum

string 1 Image md5sum for the software image. The md5sum, if
provided, along with the image name, uniquely identifies an
image uploaded to the CAL.

Note: The image-checksum field is used only if you specify
the image field as the volume source.

See also

"VDU Data Model (vnfd:vdu)" on page 61

"Virtual Network Function Descriptor" on page 36

Open Source MANO Information Model OSM Information Model

 95

vnfd:vdu-dependency

List of virtual deployment unit (VDU) dependencies, from which the orchestrator determines
the order of startup among the VDUs.

Fields

ID Type Cardinality Description

vdu-source-ref leafref 1 Identifier of the VDU:

"../../vdu/id"

vdu-depends-on-
ref

leafref 1 Reference to the VDU on which the source VDU
depends:

"../../vdu/id"

See also

"VDU Data Model (vnfd:vdu)" on page 61

"VNFD Data Model (vnfd:vnfd)" on page 41

OSM Information Model Open Source MANO Information Model

96

vnfd:monitoring-param

List of monitoring parameters at the VNF level.

Fields

ID Type Cardinality Description

http-endpoint list 0..n List of http endpoints to be used by
monitoring params.

See "http-endpoint" on page 96.

monitoring-param list 0..n List of monitoring parameters.

See "monitoring-param" on page 98

monitoring-param-ui-
data

grouping 1 Grouping of monitoring parameters on the
UI.

See "monitoring-param-ui-data" on page 99

monitoring-param-
value

grouping 1

http-endpoint

List of http endpoints to be used by monitoring params.

ID Type Cardinality Description

path string 1 The HTTP path on the management
server.

https boolean 1 [Default false] Pick HTTPS instead of
HTTP.

port inet:port-
number

1 HTTP port to connect to.

Open Source MANO Information Model OSM Information Model

 97

ID Type Cardinality Description

username string 1 HTTP basic auth user name.

password string 1 HTTP basic auth password.

polling_interval_secs uint8 1 [Default 2] HTTP polling interval in
seconds.

method enum 1 Method type of the HTTP operation:

 GET (default)

 POST

 PUT

 DELETE

 PATCH

 OPTIONS

data string 1 Data to send in the POST body.

headers list 0..n List of custom HTTP headers to put on the
HTTP request.

See "http-endpoint:headers" on page 98.

OSM Information Model Open Source MANO Information Model

98

http-endpoint:headers

List of custom HTTP headers to put on the HTTP request.

ID Type Cardinality Description

key string 1 HTTP header key.

value string 1 HTTP header value.

monitoring-param

List of monitoring parameters.

ID Type Cardinality Description

id string 1 [Key] Identifier for the monitoring parameter.

name string 1 Name of the monitoring parameter.

http-endpoint-
ref

leafref 1 Reference to the HTTP endpoint.

"../../http-endpoint/path"

json-query-
method

enum 1 The method to extract a value from a JSON
response:

 NAMEKEY: [Default] Use the name as the key
for a non-nested value.

 JSONPATH: Use jsonpath-rw implementation
to extract a value.

 OBJECTPATH: Use objectpath
implementation to extract a value.

json-query-
params

container 1 Object for JSON query parameters.

See "monitoring-param:json-query-params" on
page 99.

Open Source MANO Information Model OSM Information Model

 99

monitoring-param:json-query-params

Object for JSON query parameters.

ID Type Cardinality Description

json-path string 1 The JSON path used to extract value from the JSON
structure.

object-
path

string 1 The object path to use to extract value form the
JSON structure.

monitoring-param-ui-data

Grouping of monitoring parameters on the UI.

ID Type Cardinality Description

description string 1 Description of the monitoring parameter.

group-tag string 1 Tag to group monitoring parameters.

widget-
type

enum 1 Type of the widget, typically used by the UI:

 HISTOGRAM

 BAR

 GAUGE

 SLIDER

 COUNTER

 TEXTBOX

units string 1 Units for the monitoring parameter, such as megabits
per second.

OSM Information Model Open Source MANO Information Model

100

monitoring-param-value

ID Type Cardinality Description

value-type enum 1 Type of the parameter value:

 INT (default)

 DECIMAL

 STRING

numeric-
constraints

container 1 Constraints for the numbers.

See "monitoring-param-value:numeric-
constraints" on page 100.

text-constraints container 1 Constraints for the text strings.

See "monitoring-param-value:text-constraints"
on page 101.

value-integer int64 1 Current value for integer parameter.

value-decimal decimal164 1 Current value for decimal parameter, up to 4
fraction digits.

value-string string 1 Current value for the string parameter.

monitoring-param-value:numeric-constraints

ID Type Cardinality Description

min-value uint64 1 Minimum value for the parameter.

max-value uint64 1 Maximum value for the parameter.

Open Source MANO Information Model OSM Information Model

 101

monitoring-param-value:text-constraints

ID Type Cardinality Description

min-length uint8 1 Minimum string length for the parameter.

max-length uint8 1 Maximum string length for the parameter.

See also

"VNFD Data Model (vnfd:vnfd)" on page 41

OSM Information Model Open Source MANO Information Model

102

vnfd:placement-groups

List of placement groups at VNF level. The placement group construct defines the compute
resource placement strategy in a cloud environment.

Fields

ID Type Cardinality Description

name string 1 Placement group name.

requirement string 1 Describes the intent/rationale behind this placement
group.

Note: This free-text field is for human consumption only.

strategy enum 1 Strategy associated with this placement group:

 COLOCATION: [Default] Share the physical
infrastructure, such as hypervisor/network, among
all members of this group.

 ISOLATION: Do not share the physical infrastructure
among the members of this group

member-
vdus

list 0..n List of VDUs that are part of this placement group.

See "member-vdus" on page 103.

Open Source MANO Information Model OSM Information Model

 103

member-vdus

List of VDUs that are part of this placement group

ID Type Cardinality Description

member-vdu-ref leafref 1 Reference to the VDU in the VNF.

"../../../vdu/id"

See also

"VNFD Data Model (vnfd:vnfd)" on page 41

Virtual Link Descriptor (nsd:vld)
List of Virtual Link Descriptors (VLDs).

A virtual link descriptor (VLD) is a deployment template that describes the resource
requirements needed for a link between VNFs, PNFs and endpoints of the network service,
which could be met by various link options that are available in the NFVI.

The NFVO can select an option after evaluating the VNFFG to determine the appropriate NFVI
to be used based on functional (e.g. dual separate paths for resilience) and other needs (e.g.
geography and regulatory requirements).

Network connections are defined by connection points and virtual links. There are three types
of connection points:

 Connect a network service to the outside world, such as the network service endpoint,
described in the NSD

 Connect between VNFs within a network service, such as the external interface of the
VNF, described in the VNFD

 Connect between VMs, described in the VNFC

There are also two types of virtual links:

 External virtual links, which can be connected to network service endpoints and external
VNF interfaces

 Internal virtual links, which can be connected to external VNF interfaces and VNFCs

Virtual links also follow the Metro Ethernet Forum E-LINE, E-TREE, and E-LAN services. Virtual
link descriptors (VLDs) contain the bandwidth and QoS requirements of the interconnection.

VLDs are required for a functioning NSD.

Fields

ID Type Cardinality Description

id string 1 [Key] Identifier for the VLD.

name string 1 VLD name.

short-name string 1 Short name to display as a label in the UI.

vendor string 1 Provider of the VLD.

Open Source MANO Information Model OSM Information Model

 105

ID Type Cardinality Description

description string 1 Description of the VLD.

version string 1 Version of the VLD.

type enum 1 Type of the virtual link. Values can be:

ELAN: A multipoint service connecting a set of
VNFs.

root-bandwidth uint64 1 Aggregate bandwidth for ELAN.

leaf-bandwidth uint64 1 Bandwidth of branches for ELAN.

vnfd-connection-
point-ref

list 0..n A list of references to connection points.

See "vnfd-connection-point-ref" on page 106.

virtual-
connection-points

list 0..n A list of virtual connection points associated
with the virtual link.

These connection points are not directly
associated with VNFs.

See "virtual-connection-points" on page 106.

provider-network container 1 Container for the provider network.

See "provider-network" on page 108.

mgmt-network boolean 1 [Default false] Indicates whether this network is
a VIM management network.

init-params choice 1 Extra parameters for VLD instantiation.

See "init-params" on page 109.

OSM Information Model Open Source MANO Information Model

106

vnfd-connection-point-ref

References to connection points.

ID Type Cardinality Description

vnf-id-ref leafref 1 Reference to a VNFD.

"../../../constituent-vnfd"
+ "[member-vnf-index = current()/../member-
vnf-index-ref]"
+ "/vnfd-id-ref";

member-vnf-index-
ref

leafref 1 [Key] Reference to member-vnf within
constituent VNFDs.

"../../../constituent-vnfd/member-vnf-index"

vnfd-connection-
point-ref

leafref 1 [Key] Reference to a connection point name in
a VNFD.

This is a leafref to path:

"/vnfd:vnfd-catalog/vnfd:vnfd"
+ "[vnfd:id = current()/../vnfd-id-ref]/"
+ "vnfd:connection-point/vnfd:name"

virtual-connection-points

List of virtual-connection points associated with the virtual link. These connection points are
not directly associated with any VNFs.

ID Type Cardinality Description

name string 1 Name of the connection point.

id string 1 Identifier for the internal connection points.

Open Source MANO Information Model OSM Information Model

 107

ID Type Cardinality Description

short-name string 1 Short name of the connection point to display as a label
in the UI.

type enum 1 Type of connection point:

VPORT: Virtual Port

port-
security-
enabled

boolean 1 Enables or disables the port security for the connection-
point.

When set to True, the resource orchestrator passes the
value to the VIM when the connection-point is created to
filter traffic.

Note: This value is supported on OpenStack only.

static-ip-
address

inet:ip-
address

1 Static IPv4 or IPv6 address for the internal/external
connection point in the VNFD. When you instantiate a
VNF, the static IP for the connection point is passed to
the VIM.

associated-
cps

list 0..n List of connection points associated with virtual
connection point.

"../../vnfd-connection-point-ref/vnfd-connection-point-
ref"

OSM Information Model Open Source MANO Information Model

108

provider-network

Container for the provider network.

ID Type Cardinality Description

physical-
network

string 1 Name of the physical network on which the provider
network is built.

overlay-type enum 1 Identifies the type of the overlay network, which is a
virtual network that is built on top of an existing network
and is supported by its infrastructure. Supported values
are:

 LOCAL — Provider network implemented in a
single compute node.

 FLAT — Provider network shared by all tenants.

 VLAN — Provider network implemented using
802.1Q tagging.

 VXLAN — Provider networks implemented using
RFC 7348.

 GRE — Provider networks implemented using GRE
tunnels.

segmentation-
id

uint32 1 Segmentation ID.

Open Source MANO Information Model OSM Information Model

 109

init-params

Extra parameters for VLD instantiation

ID Type Cardinality Description

vim-
network-
name

string 1 Name of network in VIM account. This is used to
indicate pre-provisioned network name in cloud
account.

ip-profile-ref string 1 Named reference to IP-profile object.

See also

"Network Service Descriptor (nsd:nsd)" on page 11

VNF Forwarding Graph Descriptor (nsd:vnffgd)
A virtual network function forwarding graph (VNFFG) is a graph, specified by a network service
provider, of bi-directional logical links that connect network function nodes, where at least one
node is a VNF through which network traffic is directed.

The VNFFG model is defined at the network service level. One or more VNFFG descriptors can
be defined in the network service descriptor (NSD).

A VNFFG model consists of a list of rendered service path (RSP) and list of classifier
components.

Fields

ID Type Cardinality Description

id string 1 Unique identifier for the VNFFGD.

name string 1 VNFFGD name.

short-
name

string 1 VNFFGD short name to use as label in the UI.

vendor string 1 Provider of the VNFFGD.

description string 1 Description of the VNFFGD.

version string 1 Version of the VNFFGD.

rsp list 0..n Defines the ordered list of references to service functions
(SF) that must be traversed as part of RSP. The SF reference
exists in the form of references to connection-points of the
constituent VNFDs, which are part of the NSD.

See "rsp" on page 111.

Open Source MANO Information Model OSM Information Model

 111

ID Type Cardinality Description

classifier list 0..n List of classifier rules for the VNFFGD.

Note: A classifier is a network function that matches traffic
flows against policy for subsequent application of the
required set of network service functions.

See "classifier" on page 113.

rsp

List of the Rendered Service Paths (RSP) for the VNFFGD.

ID Type Cardinality Description

id string 1 Unique identifier for the RSP.

name string 1 RSP name.

vnfd-connection-point-
ref

list 0..n List of references to connection
points.

See "rsp:vnfd-connection-point-ref"
on page 112.

OSM Information Model Open Source MANO Information Model

112

rsp:vnfd-connection-point-ref

List of references to connection points.

ID Type Cardinality Description

member-vnf-index-
ref

leafref 1 Reference to member VNF within constituent
VNFDs.

"../../../../constituent-vnfd/member-vnf-
index"

order uint8 1 A number that denotes the VNF in a chain.

vnfd-id-ref leafref 1 A reference to a VNFD.

"../../../../constituent-vnfd" +

"[member-vnf-index = current()/../member-
vnf-index-ref]" +

"/vnfd-id-ref"

vnfd-connection-
point-ref

leafref 1 A reference to a connection point name in a
VNFD.

"/vnfd:vnfd-catalog/vnfd:vnfd" +

"[vnfd:id = current()/../vnfd-id-ref]/" +

"vnfd:connection-point/vnfd:name"

Open Source MANO Information Model OSM Information Model

 113

classifier

List of classifier rules for the VNFFGD.

ID Type Cardinality Description

id string 1 Unique identifier for the classifier rule.

name string 1 Name of the classifier.

rsp-id-ref leafref 1 A reference to the RSP defined within the VNFFG. The
packets identified by the packet filters are steered
through this RSP.

"../../rsp/id"

member-vnf-
index-ref

leafref 1 Reference to member-vnf within constituent-vndfs.

"../../../constituent-vnfd/member-vnf-index"

vnfd-id-ref leafref 1 A reference to a VNFD.

"../../../constituent-vnfd" +

"[member-vnf-index = current()/../member-vnf-index-
ref]" +

"/vnfd-id-ref"

vnfd-
connection-
point-ref

leafref 1 A reference to a connection point name in a VNFD.

"/vnfd:vnfd-catalog/vnfd:vnfd" +

"[vnfd:id = current()/../vnfd-id-ref]/" +

"vnfd:connection-point/vnfd:name"

match-attributes list 0..n
A list of packet filters that identifies the packet stream
to be consumed by the RSP.

See "classifier:match-attributes " on page 114

OSM Information Model Open Source MANO Information Model

114

classifier:match-attributes

A list of packet filters that identifies the packet stream to be fed to the RSP.

ID Type Cardinality Description

id string 1 Unique identifier for the classifier match-
attribute rule.

ip-proto uint8 1 IP protocol.

source-ip-address inet:ip-address 1 Source IP address.

destination-ip-
address

inet:ip-address 1 Destination IP address.

source-port inet:port-
number

1 Source port number.

destination-port inet:port-
number

1 Destination port number.

Schema

 grouping vnfd-descriptor {
 leaf id {
 description "Identifier for the VNFD.";
 type string;
 }

 leaf name {
 description "VNFD name.";
 mandatory true;
 type string;
 }

 leaf short-name {
 description "VNFD short name.";
 type string;
 }

 leaf vendor {
 description "Vendor of the VNFD.";
 type string;

Open Source MANO Information Model OSM Information Model

 115

 }

 leaf logo {
 description
 "Vendor logo for the Virtual Network Function";
 type string;
 }

 leaf description {
 description "Description of the VNFD.";
 type string;
 }

 leaf version {
 description "Version of the VNFD";
 type string;
 }

 uses manotypes:vnf-configuration;

 uses config-parameter;

 container mgmt-interface {
 description
 "Interface over which the VNF is managed.";

 choice endpoint-type {
 description
 "Indicates the type of management endpoint.";

 case ip {
 description
 "Specifies the static IP address for managing the VNF.";
 leaf ip-address {
 type inet:ip-address;
 }
 }

 case vdu-id {
 description
 "Use the default management interface on this VDU.";
 leaf vdu-id {
 type leafref {
 path "../../vdu/id";
 }
 }
 }

 case cp {
 description
 "Use the ip address associated with this connection point.";
 leaf cp {
 type leafref {
 path "../../connection-point/name";
 }
 }

OSM Information Model Open Source MANO Information Model

116

 }
 }

 leaf port {
 description
 "Port for the management interface.";
 type inet:port-number;
 }

 container dashboard-params {
 description "Parameters for the VNF dashboard";

 leaf path {
 description "The HTTP path for the dashboard";
 type string;
 }

 leaf https {
 description "Pick HTTPS instead of HTTP , Default is false";
 type boolean;
 }

 leaf port {
 description "The HTTP port for the dashboard";
 type inet:port-number;
 }
 }
 }

 list internal-vld {
 key "id";
 description
 "List of Internal Virtual Link Descriptors (VLD).
 The internal VLD describes the basic topology of
 the connectivity (e.g. E-LAN, E-Line, E-Tree)
 between internal VNF components of the system.";

 leaf id {
 description "Identifier for the VLD";
 type string;
 }

 leaf name {
 description "Name of the internal VLD";
 type string;
 }

 leaf short-name {
 description "Short name of the internal VLD";
 type string;
 }

 leaf description {
 type string;
 }

Open Source MANO Information Model OSM Information Model

 117

 leaf type {
 type manotypes:virtual-link-type;
 }

 leaf root-bandwidth {
 description
 "For ELAN this is the aggregate bandwidth.";
 type uint64;
 }

 leaf leaf-bandwidth {
 description
 "For ELAN this is the bandwidth of branches.";
 type uint64;
 }

 list internal-connection-point {
 key "id-ref";
 description "List of internal connection points in this VLD";
 leaf id-ref {
 description "reference to the internal connection point id";
 type leafref {
 path "../../../vdu/internal-connection-point/id";
 }
 }
 }

 list virtual-connection-points {
 description
 "A list of virtual-connection points associated with Virtual
Link.
 These connection points are not directly associated with any
VDUs";
 key name;
 uses common-connection-point;

 leaf-list associated-cps {
 description
 "A List of connection points associated with virtual
connection point";
 type leafref {
 path "../../internal-connection-point/id-ref";
 }
 }
 }

 uses manotypes:provider-network;
 choice init-params {
 description "Extra parameters for VLD instantiation";

 case vim-network-ref {
 leaf vim-network-name {
 description
 "Name of network in VIM account. This is used to indicate
 pre-provisioned network name in cloud account.";
 type string;

OSM Information Model Open Source MANO Information Model

118

 }
 }

 case vim-network-profile {
 leaf ip-profile-ref {
 description "Named reference to IP-profile object";
 type string;
 }
 }

 }
 }

 uses manotypes:ip-profile-list;

 list connection-point {
 key "name";
 description
 "List for external connection points. Each VNF has one
 or more external connection points. As the name
 implies that external connection points are used for
 connecting the VNF to other VNFs or to external networks.
 Each VNF exposes these connection points to the
 orchestrator. The orchestrator can construct network
 services by connecting the connection points between
 different VNFs. The NFVO will use VLDs and VNFFGs at
 the network service level to construct network services.";

 uses common-connection-point;
 }

 list vdu {
 description "List of Virtual Deployment Units";
 key "id";

 leaf id {
 description "Unique id for the VDU";
 type string;
 }

 leaf name {
 description "Unique name for the VDU";
 type string;
 }

 leaf description {
 description "Description of the VDU.";
 type string;
 }

 leaf count {
 description "Number of instances of VDU";
 type uint64;
 }

 leaf mgmt-vpci {

Open Source MANO Information Model OSM Information Model

 119

 description
 "Specifies the virtual PCI address. Expressed in
 the following format dddd:dd:dd.d. For example
 0000:00:12.0. This information can be used to
 pass as metadata during the VM creation.";
 type string;
 }

 uses manotypes:vm-flavor;
 uses manotypes:guest-epa;
 uses manotypes:vswitch-epa;
 uses manotypes:hypervisor-epa;
 uses manotypes:host-epa;

 list alarm {
 key "alarm-id";

 uses manotypes:alarm;
 }

 uses manotypes:image-properties;

 choice cloud-init-input {
 description
 "Indicates how the contents of cloud-init script are provided.
 There are 2 choices - inline or in a file";

 case inline {
 leaf cloud-init {
 description
 "Contents of cloud-init script, provided inline, in cloud-
config format";
 type string;
 }
 }

 case filename {
 leaf cloud-init-file {
 description
 "Name of file with contents of cloud-init script in cloud-
config format";
 type string;
 }
 }
 }

 uses manotypes:supplemental-boot-data;

 list internal-connection-point {
 key "id";
 description
 "List for internal connection points. Each VNFC
 has zero or more internal connection points.
 Internal connection points are used for connecting
 the VNF components internal to the VNF. If a VNF
 has only one VNFC, it may not have any internal

OSM Information Model Open Source MANO Information Model

120

 connection points.";

 uses common-connection-point;
 }

 list internal-interface {
 description
 "List of internal interfaces for the VNF";
 key name;

 leaf name {
 description
 "Name of internal interface. Note that this
 name has only local significance to the VDU.";
 type string;
 }

 leaf vdu-internal-connection-point-ref {
 type leafref {
 path "../../internal-connection-point/id";
 }
 }
 uses virtual-interface;
 }

 list external-interface {
 description
 "List of external interfaces for the VNF.
 The external interfaces enable sending
 traffic to and from VNF.";
 key name;

 leaf name {
 description
 "Name of the external interface. Note that
 this name has only local significance.";
 type string;
 }

 leaf vnfd-connection-point-ref {
 description
 "Name of the external connection point.";
 type leafref {
 path "../../../connection-point/name";
 }
 }
 uses virtual-interface;
 }

 list volumes {
 key "name";

 leaf name {
 description "Name of the disk-volumes, e.g. vda, vdb etc";
 type string;
 }

Open Source MANO Information Model OSM Information Model

 121

 uses manotypes:volume-info;
 }
 }

 list vdu-dependency {
 description
 "List of VDU dependencies.";

 key vdu-source-ref;
 leaf vdu-source-ref {
 type leafref {
 path "../../vdu/id";
 }
 }

 leaf vdu-depends-on-ref {
 description
 "Reference to the VDU that
 source VDU depends.";
 type leafref {
 path "../../vdu/id";
 }
 }
 }

 leaf service-function-chain {
 description "Type of node in Service Function Chaining
Architecture";

 type enumeration {
 enum UNAWARE;
 enum CLASSIFIER;
 enum SF;
 enum SFF;
 }
 default "UNAWARE";
 }

 leaf service-function-type {
 description
 "Type of Service Function.
 NOTE: This needs to map with Service Function Type in ODL to
 support VNFFG. Service Function Type is manadatory param in ODL
 SFC. This is temporarily set to string for ease of use";
 type string;
 }

 uses manotypes:monitoring-param;

 list placement-groups {
 description "List of placement groups at VNF level";

 key "name";
 uses manotypes:placement-group-info;

OSM Information Model Open Source MANO Information Model

122

 list member-vdus {

 description
 "List of VDUs that are part of this placement group";
 key "member-vdu-ref";

 leaf member-vdu-ref {
 type leafref {
 path "../../../vdu/id";
 }
 }
 }
 }
 }

See also

"Network Service Descriptor (nsd:nsd)" on page 11

Open Source MANO Information Model OSM Information Model

 123

MANO YANG Models
YANG is a data modeling language used to design configuration and state data manipulated by
the Network Configuration (NETCONF) Protocol [RFC 6241], NETCONF remote procedure calls,
and NETCONF notifications.

This section provides yang output of the models used by the MANO descriptors.

Open Source MANO Information Model OSM Information Model

 125

nsd.yang Model

The nsd.yang file defines the Network Service Descriptor (NSD), the top-level deployment of a
network service. The nsd module contains attributes for a group of network functions, which
together constitute a service definition. These attributes contain the relationship requirements
of the VNFs chained together as a service. The NSD references one or more VNFDs, as well as
other descriptors that are used for designing the service chains.

 module nsd
 {
 namespace "urn:ietf:params:xml:ns:yang:nfvo:nsd";
 prefix "nsd";

 import rw-pb-ext {
 prefix "rwpb";
 }

 import vld {
 prefix "vld";
 }

 import vnfd {
 prefix "vnfd";
 }

 import ietf-inet-types {
 prefix "inet";
 }

 import ietf-yang-types {
 prefix "yang";
 }

 import mano-types {
 prefix "manotypes";
 }

 revision 2014-10-27 {
 description
 "Initial revision. This YANG file defines
 the Network Service Descriptor (NSD)";
 reference
 "Derived from earlier versions of base YANG files";
 }

 grouping primitive-parameter {
 leaf name {
 description
 "Name of the parameter.";
 type string;
 }

 leaf data-type {
 description

OSM Information Model Open Source MANO Information Model

126

 "Data type associated with the name.";
 type manotypes:parameter-data-type;
 }

 leaf mandatory {
 description "Is this field mandatory";
 type boolean;
 default false;
 }

 leaf default-value {
 description "The default value for this field";
 type string;
 }

 leaf parameter-pool {
 description "NSD Parameter pool name to use for this parameter";
 type string;
 }
 }

 grouping nsd-descriptor {
 leaf id {
 description "Identifier for the NSD.";
 type string;
 }

 leaf name {
 description "NSD name.";
 mandatory true;
 type string;
 }

 leaf short-name {
 description "NSD short name.";
 type string;
 }

 leaf vendor {
 description "Vendor of the NSD.";
 type string;
 }

 leaf logo {
 description
 "File path for the vendor specific logo. For example
icons/mylogo.png.
 The logo should be part of the network service";
 type string;
 }

 leaf description {
 description "Description of the NSD.";
 type string;
 }

Open Source MANO Information Model OSM Information Model

 127

 leaf version {
 description "Version of the NSD";
 type string;
 }

 list connection-point {
 description
 "List for external connection points.
 Each NS has one or more external connection
 points. As the name implies that external
 connection points are used for connecting
 the NS to other NS or to external networks.
 Each NS exposes these connection points to
 the orchestrator. The orchestrator can
 construct network service chains by
 connecting the connection points between
 different NS.";

 key "name";
 leaf name {
 description
 "Name of the NS connection point.";
 type string;
 }

 leaf type {
 description
 "Type of the connection point.";
 type manotypes:connection-point-type;
 }
 }

 /* Model limitation,
 see the comments under vnfd-connection-point-ref
 */
 list vld {
 description
 "List of Virtual Link Descriptors.";

 key "id";

 leaf id {
 description
 "Identifier for the VLD.";
 type string;
 }

 leaf name {
 description
 "Virtual Link Descriptor (VLD) name.";
 type string;
 }

 leaf short-name {
 description
 "Short name for VLD for UI";

OSM Information Model Open Source MANO Information Model

128

 type string;
 }

 leaf vendor {
 description "Provider of the VLD.";
 type string;
 }

 leaf description {
 description "Description of the VLD.";
 type string;
 }

 leaf version {
 description "Version of the VLD";
 type string;
 }

 leaf type {
 type manotypes:virtual-link-type;
 }

 leaf root-bandwidth {
 description
 "For ELAN this is the aggregate bandwidth.";
 type uint64;
 }

 leaf leaf-bandwidth {
 description
 "For ELAN this is the bandwidth of branches.";
 type uint64;
 }

 list vnfd-connection-point-ref {
 description
 "A list of references to connection points.";
 key "member-vnf-index-ref vnfd-connection-point-ref";

 leaf member-vnf-index-ref {
 description "Reference to member-vnf within constituent-vnfds";
 type leafref {
 path "../../../constituent-vnfd/member-vnf-index";
 }
 }

 leaf vnfd-id-ref {
 description
 "A reference to a vnfd. This is a
 leafref to path:
 ../../nsd:constituent-vnfd
 + [nsd:id = current()/../nsd:id-ref]
 + /nsd:vnfd-id-ref
 NOTE: An issue with confd is preventing the
 use of xpath. Seems to be an issue with leafref
 to leafref, whose target is in a different module.

Open Source MANO Information Model OSM Information Model

 129

 Once that is resolved this will switched to use
 leafref";
 type leafref {
 path "../../../constituent-vnfd" +
 "[member-vnf-index = current()/../member-vnf-index-ref]" +
 "/vnfd-id-ref";
 }
 }

 leaf vnfd-connection-point-ref {
 description
 "A reference to a connection point name
 in a vnfd. This is a leafref to path:
 /vnfd:vnfd-catalog/vnfd:vnfd
 + [vnfd:id = current()/../nsd:vnfd-id-ref]
 + /vnfd:connection-point/vnfd:name
 NOTE: An issue with confd is preventing the
 use of xpath. Seems to be an issue with leafref
 to leafref, whose target is in a different module.
 Once that is resolved this will switched to use
 leafref";
 type string;
 }
 }

 // replicate for pnfd container here
 uses manotypes:provider-network;

 leaf mgmt-network {
 description "Flag indicating whether this network is a VIM
management network";
 type boolean;
 default false;
 }

 choice init-params {
 description "Extra parameters for VLD instantiation";

 case vim-network-ref {
 leaf vim-network-name {
 description
 "Name of network in VIM account. This is used to indicate
 pre-provisioned network name in cloud account.";
 type string;
 }
 }

 case vim-network-profile {
 leaf ip-profile-ref {
 description "Named reference to IP-profile object";
 type string;
 }
 }

 }
 }

OSM Information Model Open Source MANO Information Model

130

 list constituent-vnfd {
 description
 "List of VNFDs that are part of this
 network service.";

 key "member-vnf-index";

 leaf member-vnf-index {
 description
 "Identifier/index for the VNFD. This separate id
 is required to ensure that multiple VNFs can be
 part of single NS";
 type uint64;
 }

 leaf vnfd-id-ref {
 description
 "Identifier for the VNFD.";
 type leafref {
 path "/vnfd:vnfd-catalog/vnfd:vnfd/vnfd:id";
 }
 }

 leaf start-by-default {
 description
 "VNFD is started as part of the NS instantiation";
 type boolean;
 default true;
 }
 }

 list placement-groups {
 description "List of placement groups at NS level";

 key "name";
 uses manotypes:placement-group-info;

 list member-vnfd {
 description
 "List of VNFDs that are part of this placement group";

 key "member-vnf-index-ref";

 leaf member-vnf-index-ref {
 description "member VNF index of this member VNF";
 type leafref {
 path "../../../constituent-vnfd/member-vnf-index";
 }
 }

 leaf vnfd-id-ref {
 description
 "Identifier for the VNFD.";
 type leafref {

Open Source MANO Information Model OSM Information Model

 131

 path "../../../constituent-vnfd" +
 "[member-vnf-index = current()/../member-vnf-index-ref]" +
 "/vnfd-id-ref";
 }
 }
 }
 }

 uses manotypes:ip-profile-list;

 list vnf-dependency {
 description
 "List of VNF dependencies.";
 key vnf-source-ref;
 leaf vnf-source-ref {
 type leafref {
 path "../../constituent-vnfd/vnfd-id-ref";
 }
 }
 leaf vnf-depends-on-ref {
 description
 "Reference to VNF that source VNF depends.";
 type leafref {
 path "../../constituent-vnfd/vnfd-id-ref";
 }
 }
 }

 list vnffgd {
 description
 "List of VNF Forwarding Graph Descriptors (VNFFGD).";

 key "id";

 leaf id {
 description
 "Identifier for the VNFFGD.";
 type string;
 }

 leaf name {
 description
 "VNFFGD name.";
 type string;
 }

 leaf short-name {
 description
 "Short name for VNFFGD for UI";
 type string;
 }

 leaf vendor {
 description "Provider of the VNFFGD.";
 type string;
 }

OSM Information Model Open Source MANO Information Model

132

 leaf description {
 description "Description of the VNFFGD.";
 type string;
 }

 leaf version {
 description "Version of the VNFFGD";
 type string;
 }

 list rsp {
 description
 "List of Rendered Service Paths (RSP).";

 key "id";

 leaf id {
 description
 "Identifier for the RSP.";
 type string;
 }

 leaf name {
 description
 "RSP name.";
 type string;
 }

 list vnfd-connection-point-ref {
 description
 "A list of references to connection points.";
 key "member-vnf-index-ref vnfd-connection-point-ref";

 leaf member-vnf-index-ref {
 description "Reference to member-vnf within constituent-vnfds";
 type leafref {
 path "../../../../constituent-vnfd/member-vnf-index";
 }
 }

 leaf order {
 type uint8;
 description
 "A number that denotes the order of a VNF in a chain";
 }

 leaf vnfd-id-ref {
 description
 "A reference to a vnfd. This is a
 leafref to path:
 ../../../../nsd:constituent-vnfd
 + [nsd:id = current()/../nsd:id-ref]
 + /nsd:vnfd-id-ref
 NOTE: An issue with confd is preventing the
 use of xpath. Seems to be an issue with leafref

Open Source MANO Information Model OSM Information Model

 133

 to leafref, whose target is in a different module.
 Once that is resolved this will switched to use
 leafref";
 type leafref {
 path "../../../../constituent-vnfd" +
 "[member-vnf-index = current()/../member-vnf-index-
ref]" +
 "/vnfd-id-ref";
 }
 }

 leaf vnfd-connection-point-ref {
 description
 "A reference to a connection point name
 in a vnfd. This is a leafref to path:
 /vnfd:vnfd-catalog/vnfd:vnfd
 + [vnfd:id = current()/../nsd:vnfd-id-ref]
 + /vnfd:connection-point/vnfd:name
 NOTE: An issue with confd is preventing the
 use of xpath. Seems to be an issue with leafref
 to leafref, whose target is in a different module.
 Once that is resolved this will switched to use
 leafref";
 type leafref {
 path "/vnfd:vnfd-catalog/vnfd:vnfd" +
 "[vnfd:id = current()/../vnfd-id-ref]/" +
 "vnfd:connection-point/vnfd:name";
 }
 }
 }
 } //rsp

 list classifier {
 description
 "List of classifier rules.";

 key "id";

 leaf id {
 description
 "Identifier for the classifier rule.";
 type string;
 }

 leaf name {
 description
 "Name of the classifier.";
 type string;
 }

 leaf rsp-id-ref {
 description
 "A reference to the RSP.";
 type leafref {
 path "../../rsp/id";
 }

OSM Information Model Open Source MANO Information Model

134

 }

 leaf member-vnf-index-ref {
 description "Reference to member-vnf within constituent-vnfds";
 type leafref {
 path "../../../constituent-vnfd/member-vnf-index";
 }
 }

 leaf vnfd-id-ref {
 description
 "A reference to a vnfd. This is a
 leafref to path:
 ../../../nsd:constituent-vnfd
 + [nsd:id = current()/../nsd:id-ref]
 + /nsd:vnfd-id-ref
 NOTE: An issue with confd is preventing the
 use of xpath. Seems to be an issue with leafref
 to leafref, whose target is in a different module.
 Once that is resolved this will switched to use
 leafref";
 type leafref {
 path "../../../constituent-vnfd" +
 "[member-vnf-index = current()/../member-vnf-index-ref]"
+
 "/vnfd-id-ref";
 }
 }

 leaf vnfd-connection-point-ref {
 description
 "A reference to a connection point name
 in a vnfd. This is a leafref to path:
 /vnfd:vnfd-catalog/vnfd:vnfd
 + [vnfd:id = current()/../nsd:vnfd-id-ref]
 + /vnfd:connection-point/vnfd:name
 NOTE: An issue with confd is preventing the
 use of xpath. Seems to be an issue with leafref
 to leafref, whose target is in a different module.
 Once that is resolved this will switched to use
 leafref";
 type leafref {
 path "/vnfd:vnfd-catalog/vnfd:vnfd" +
 "[vnfd:id = current()/../vnfd-id-ref]/" +
 "vnfd:connection-point/vnfd:name";
 }
 }

 list match-attributes {
 description
 "List of match attributes.";

 key "id";

 leaf id {
 description

Open Source MANO Information Model OSM Information Model

 135

 "Identifier for the classifier match attribute rule.";
 type string;
 }

 leaf ip-proto {
 description
 "IP Protocol.";
 type uint8;
 }

 leaf source-ip-address {
 description
 "Source IP address.";
 type inet:ip-address;
 }

 leaf destination-ip-address {
 description
 "Destination IP address.";
 type inet:ip-address;
 }

 leaf source-port {
 description
 "Source port number.";
 type inet:port-number;
 }

 leaf destination-port {
 description
 "Destination port number.";
 type inet:port-number;
 }
 } //match-attributes
 } // classifier
 } // vnffgd

 list monitoring-param {
 description
 "List of monitoring parameters from VNFs that should be
 propagated up into NSR";
 key "id";

 leaf id {
 type string;
 }

 leaf name {
 type string;
 }

 uses manotypes:monitoring-param-value;
 uses manotypes:monitoring-param-ui-data;
 uses manotypes:monitoring-param-aggregation;

 list vnfd-monitoring-param {

OSM Information Model Open Source MANO Information Model

136

 description "A list of VNFD monitoring params";
 key "member-vnf-index-ref vnfd-monitoring-param-ref";

 leaf vnfd-id-ref {
 description
 "A reference to a vnfd. This is a
 leafref to path:
 ../../../../nsd:constituent-vnfd
 + [nsd:id = current()/../nsd:id-ref]
 + /nsd:vnfd-id-ref
 NOTE: An issue with confd is preventing the
 use of xpath. Seems to be an issue with leafref
 to leafref, whose target is in a different module.
 Once that is resolved this will switched to use
 leafref";
 type leafref {
 path "../../../constituent-vnfd" +
 "[member-vnf-index = current()/../member-vnf-index-ref]" +
 "/vnfd-id-ref";
 }
 }

 leaf vnfd-monitoring-param-ref {
 description "A reference to the VNFD monitoring param";
 type leafref {
 path "/vnfd:vnfd-catalog/vnfd:vnfd"
 + "[vnfd:id = current()/../vnfd-id-ref]"
 + "/vnfd:monitoring-param/vnfd:id";
 }
 }

 leaf member-vnf-index-ref {
 description
 "Mandatory reference to member-vnf within constituent-vnfds";
 type leafref {
 path "../../../constituent-vnfd/member-vnf-index";
 }
 }
 }
 }

 uses manotypes:input-parameter-xpath;

 list parameter-pool {
 description
 "Pool of parameter values which must be
 pulled from during configuration";
 key "name";

 leaf name {
 description
 "Name of the configuration value pool";
 type string;
 }

 container range {

Open Source MANO Information Model OSM Information Model

 137

 description
 "Create a range of values to populate the pool with";

 leaf start-value {
 description
 "Generated pool values start at this value";
 type uint32;
 mandatory true;
 }

 leaf end-value {
 description
 "Generated pool values stop at this value";
 type uint32;
 mandatory true;
 }
 }
 }

 uses manotypes:ns-service-primitive;

 list initial-config-primitive {
 rwpb:msg-new NsdInitialConfigPrimitive;
 description
 "Initial set of configuration primitives for NSD.";
 key "seq";

 uses manotypes:initial-config;
 }

 container nsd-catalog {

 list nsd {
 key "id";

 uses nsd-descriptor;
 }
 }

 }

Open Source MANO Information Model OSM Information Model

 139

vnfd.yang Model

The vnfd.yang file defines the Virtual Network Function (VNF) attributes. The vnfd module
defines VNF platform resource requirements, such as CPU, memory, interfaces, and network. It
also contains special characteristics related to EPA attributes and performance capabilities and
connectivity, interface, and KPI requirements that can be used to establish virtual links within
the NFVI between its Virtual Network Function Component (VNFC) instances, or between a VNF
instance and the endpoint interface to the other network functions.

module vnfd
 {
 namespace "urn:ietf:params:xml:ns:yang:nfvo:vnfd";
 prefix "vnfd";

 import mano-types {
 prefix "manotypes";
 }

 import rw-pb-ext {
 prefix "rwpb";
 }

 import ietf-yang-types {
 prefix "yang";
 }

 import ietf-inet-types {
 prefix "inet";
 }

 revision 2015-09-10 {
 description
 "Initial revision. This YANG file defines
 the Virtual Network Function (VNF)";
 reference
 "Derived from earlier versions of base YANG files";
 }

 grouping common-connection-point {
 leaf name {
 description "Name of the connection point";
 type string;
 }

 leaf id {
 description "Identifier for the internal connection points";
 type string;
 }

 leaf short-name {
 description "Short name of the connection point";
 type string;
 }

OSM Information Model Open Source MANO Information Model

140

 leaf type {
 description "Type of the connection point.";
 type manotypes:connection-point-type;
 }
 leaf port-security-enabled {
 description "Enables the port security for the port";
 type boolean;
 }

 leaf static-ip-address {
 description "Static IP address for the connection point";
 type inet:ip-address;
 }
 }

 grouping virtual-interface {
 container virtual-interface {
 description
 "Container for the virtual interface properties";

 leaf type {
 description
 "Specifies the type of virtual interface
 between VM and host.
 VIRTIO : Use the traditional VIRTIO interface.
 PCI-PASSTHROUGH : Use PCI-PASSTHROUGH interface.
 SR-IOV : Use SR-IOV interface.
 E1000 : Emulate E1000 interface.
 RTL8139 : Emulate RTL8139 interface.
 PCNET : Emulate PCNET interface.
 OM-MGMT : Used to specify openmano mgmt external-
connection type";

 type enumeration {
 enum OM-MGMT;
 enum PCI-PASSTHROUGH;
 enum SR-IOV;
 enum VIRTIO;
 enum E1000;
 enum RTL8139;
 enum PCNET;
 }
 default "VIRTIO";
 }

 leaf vpci {
 description
 "Specifies the virtual PCI address. Expressed in
 the following format dddd:dd:dd.d. For example
 0000:00:12.0. This information can be used to
 pass as metadata during the VM creation.";
 type string;
 }

 leaf bandwidth {

Open Source MANO Information Model OSM Information Model

 141

 description
 "Aggregate bandwidth of the NIC.";
 type uint64;
 }
 }
 }

 grouping vnfd-descriptor {
 leaf id {
 description "Identifier for the VNFD.";
 type string;
 }

 leaf name {
 description "VNFD name.";
 mandatory true;
 type string;
 }

 leaf short-name {
 description "VNFD short name.";
 type string;
 }

 leaf vendor {
 description "Vendor of the VNFD.";
 type string;
 }

 leaf logo {
 description
 "Vendor logo for the Virtual Network Function";
 type string;
 }

 leaf description {
 description "Description of the VNFD.";
 type string;
 }

 leaf version {
 description "Version of the VNFD";
 type string;
 }

 uses manotypes:vnf-configuration;

 uses config-parameter;

 container mgmt-interface {
 description
 "Interface over which the VNF is managed.";

 choice endpoint-type {

OSM Information Model Open Source MANO Information Model

142

 description
 "Indicates the type of management endpoint.";

 case ip {
 description
 "Specifies the static IP address for managing the VNF.";
 leaf ip-address {
 type inet:ip-address;
 }
 }

 case vdu-id {
 description
 "Use the default management interface on this VDU.";
 leaf vdu-id {
 type leafref {
 path "../../vdu/id";
 }
 }
 }

 case cp {
 description
 "Use the ip address associated with this connection point.";
 leaf cp {
 type leafref {
 path "../../connection-point/name";
 }
 }
 }
 }

 leaf port {
 description
 "Port for the management interface.";
 type inet:port-number;
 }

 container dashboard-params {
 description "Parameters for the VNF dashboard";

 leaf path {
 description "The HTTP path for the dashboard";
 type string;
 }

 leaf https {
 description "Pick HTTPS instead of HTTP , Default is false";
 type boolean;
 }

 leaf port {
 description "The HTTP port for the dashboard";
 type inet:port-number;
 }
 }

Open Source MANO Information Model OSM Information Model

 143

 }

 list internal-vld {
 key "id";
 description
 "List of Internal Virtual Link Descriptors (VLD).
 The internal VLD describes the basic topology of
 the connectivity (e.g. E-LAN, E-Line, E-Tree)
 between internal VNF components of the system.";

 leaf id {
 description "Identifier for the VLD";
 type string;
 }

 leaf name {
 description "Name of the internal VLD";
 type string;
 }

 leaf short-name {
 description "Short name of the internal VLD";
 type string;
 }

 leaf description {
 type string;
 }

 leaf type {
 type manotypes:virtual-link-type;
 }

 leaf root-bandwidth {
 description
 "For ELAN this is the aggregate bandwidth.";
 type uint64;
 }

 leaf leaf-bandwidth {
 description
 "For ELAN this is the bandwidth of branches.";
 type uint64;
 }

 list internal-connection-point {
 key "id-ref";
 description "List of internal connection points in this VLD";
 leaf id-ref {
 description "reference to the internal connection point id";
 type leafref {
 path "../../../vdu/internal-connection-point/id";
 }
 }
 }

OSM Information Model Open Source MANO Information Model

144

 list virtual-connection-points {
 description
 "A list of virtual-connection points associated with Virtual
Link.
 These connection points are not directly associated with any
VDUs";
 key name;
 uses common-connection-point;

 leaf-list associated-cps {
 description
 "A List of connection points associated with virtual
connection point";
 type leafref {
 path "../../internal-connection-point/id-ref";
 }
 }
 }

 uses manotypes:provider-network;
 choice init-params {
 description "Extra parameters for VLD instantiation";

 case vim-network-ref {
 leaf vim-network-name {
 description
 "Name of network in VIM account. This is used to indicate
 pre-provisioned network name in cloud account.";
 type string;
 }
 }

 case vim-network-profile {
 leaf ip-profile-ref {
 description "Named reference to IP-profile object";
 type string;
 }
 }

 }
 }

 uses manotypes:ip-profile-list;

 list connection-point {
 key "name";
 description
 "List for external connection points. Each VNF has one
 or more external connection points. As the name
 implies that external connection points are used for
 connecting the VNF to other VNFs or to external networks.
 Each VNF exposes these connection points to the
 orchestrator. The orchestrator can construct network
 services by connecting the connection points between
 different VNFs. The NFVO will use VLDs and VNFFGs at
 the network service level to construct network services.";

Open Source MANO Information Model OSM Information Model

 145

 uses common-connection-point;
 }

 list vdu {
 description "List of Virtual Deployment Units";
 key "id";

 leaf id {
 description "Unique id for the VDU";
 type string;
 }

 leaf name {
 description "Unique name for the VDU";
 type string;
 }

 leaf description {
 description "Description of the VDU.";
 type string;
 }

 leaf count {
 description "Number of instances of VDU";
 type uint64;
 }

 leaf mgmt-vpci {
 description
 "Specifies the virtual PCI address. Expressed in
 the following format dddd:dd:dd.d. For example
 0000:00:12.0. This information can be used to
 pass as metadata during the VM creation.";
 type string;
 }

 uses manotypes:vm-flavor;
 uses manotypes:guest-epa;
 uses manotypes:vswitch-epa;
 uses manotypes:hypervisor-epa;
 uses manotypes:host-epa;

 list alarm {
 key "alarm-id";

 uses manotypes:alarm;
 }

 uses manotypes:image-properties;

 choice cloud-init-input {
 description
 "Indicates how the contents of cloud-init script are provided.
 There are 2 choices - inline or in a file";

OSM Information Model Open Source MANO Information Model

146

 case inline {
 leaf cloud-init {
 description
 "Contents of cloud-init script, provided inline, in cloud-
config format";
 type string;
 }
 }

 case filename {
 leaf cloud-init-file {
 description
 "Name of file with contents of cloud-init script in cloud-
config format";
 type string;
 }
 }
 }

 uses manotypes:supplemental-boot-data;

 list internal-connection-point {
 key "id";
 description
 "List for internal connection points. Each VNFC
 has zero or more internal connection points.
 Internal connection points are used for connecting
 the VNF components internal to the VNF. If a VNF
 has only one VNFC, it may not have any internal
 connection points.";

 uses common-connection-point;
 }

 list internal-interface {
 description
 "List of internal interfaces for the VNF";
 key name;

 leaf name {
 description
 "Name of internal interface. Note that this
 name has only local significance to the VDU.";
 type string;
 }

 leaf vdu-internal-connection-point-ref {
 type leafref {
 path "../../internal-connection-point/id";
 }
 }
 uses virtual-interface;
 }

 list external-interface {
 description

Open Source MANO Information Model OSM Information Model

 147

 "List of external interfaces for the VNF.
 The external interfaces enable sending
 traffic to and from VNF.";
 key name;

 leaf name {
 description
 "Name of the external interface. Note that
 this name has only local significance.";
 type string;
 }

 leaf vnfd-connection-point-ref {
 description
 "Name of the external connection point.";
 type leafref {
 path "../../../connection-point/name";
 }
 }
 uses virtual-interface;
 }

 list volumes {
 key "name";

 leaf name {
 description "Name of the disk-volumes, e.g. vda, vdb etc";
 type string;
 }

 uses manotypes:volume-info;
 }
 }

 list vdu-dependency {
 description
 "List of VDU dependencies.";

 key vdu-source-ref;
 leaf vdu-source-ref {
 type leafref {
 path "../../vdu/id";
 }
 }

 leaf vdu-depends-on-ref {
 description
 "Reference to the VDU that
 source VDU depends.";
 type leafref {
 path "../../vdu/id";
 }
 }
 }

 leaf service-function-chain {

OSM Information Model Open Source MANO Information Model

148

 description "Type of node in Service Function Chaining
Architecture";

 type enumeration {
 enum UNAWARE;
 enum CLASSIFIER;
 enum SF;
 enum SFF;
 }
 default "UNAWARE";
 }

 leaf service-function-type {
 description
 "Type of Service Function.
 NOTE: This needs to map with Service Function Type in ODL to
 support VNFFG. Service Function Type is mandatory param in ODL
 SFC. This is temporarily set to string for ease of use";
 type string;
 }

 uses manotypes:monitoring-param;

 list placement-groups {
 description "List of placement groups at VNF level";

 key "name";
 uses manotypes:placement-group-info;

 list member-vdus {

 description
 "List of VDUs that are part of this placement group";
 key "member-vdu-ref";

 leaf member-vdu-ref {
 type leafref {
 path "../../../vdu/id";
 }
 }
 }
 }
 }

 container vnfd-catalog {
 description
 "Virtual Network Function Descriptor (VNFD).";

 list vnfd {
 key "id";

 uses vnfd-descriptor;
 }
 }
 }

Open Source MANO Information Model OSM Information Model

 149

mano-types.yang Model

The mano-types.yang file defines the common types and definitions used by both network
and VNF descriptors, shown in "nsd.yang Model" on page 125 and "vnfd.yang Model" on page
139, respectively.

module mano-types
 {
 namespace "urn:ietf:params:xml:ns:yang:nfvo:mano-types";
 prefix "manotypes";

 import ietf-inet-types {
 prefix "inet";
 }

 import rw-pb-ext {
 prefix "rwpb";
 }

 revision 2015-04-23 {
 description
 "Initial revision. This YANG file defines
 the reusable base types for VNF Management
 and Orchestration (MANO).";
 reference
 "Derived from earlier versions of base YANG files";
 }

 typedef package-type {
 description "Type of descriptor being on-boarded";
 type enumeration {
 enum NSD;
 enum VNFD;
 }
 }

 typedef parameter-data-type {
 type enumeration {
 enum STRING;
 enum INTEGER;
 enum BOOLEAN;
 }
 }

 grouping primitive-parameter-value {
 list parameter {
 description
 "List of parameters to the configuration primitive.";
 key "name";
 leaf name {
 description
 "Name of the parameter.";
 type string;
 }

OSM Information Model Open Source MANO Information Model

150

 leaf value {
 description
 "Value associated with the name.";
 type string;
 }
 }
 }

 grouping primitive-parameter {
 leaf name {
 description
 "Name of the parameter.";
 type string;
 }

 leaf data-type {
 description
 "Data type associated with the name.";
 type manotypes:parameter-data-type;
 }

 leaf mandatory {
 description "Is this field mandatory";
 type boolean;
 default false;
 }

 leaf default-value {
 description "The default value for this field";
 type string;
 }

 leaf parameter-pool {
 description "NSD Parameter pool name to use for this parameter";
 type string;
 }

 leaf read-only {
 description
 "The value should be greyed out by the UI.
 Only applies to parameters with default values.";
 type boolean;
 }

 leaf hidden {
 description
 "The value should be hidden by the UI.
 Only applies to parameters with default values.";
 type boolean;
 }
 }

 grouping event-config {
 leaf seq {
 description

Open Source MANO Information Model OSM Information Model

 151

 "Sequence number for the configuration primitive.";
 type uint64;
 }

 leaf name {
 description
 "Name of the configuration primitive.";
 type string;
 mandatory "true";
 }

 leaf user-defined-script {
 description
 "A user defined script.";
 type string;
 }

 list parameter {
 key "name";
 leaf name {
 type string;
 }

 leaf value {
 type string;
 }
 }
 }

 grouping image-properties {
 leaf image {
 description
 "Image name for the software image.
 If the image name is found within the VNF package it will
 be uploaded to all cloud accounts during onboarding process.
 Otherwise, the image must be added to the cloud account with
 the same name as entered here.
 ";
 type string;
 }

 leaf image-checksum {
 description
 "Image md5sum for the software image.
 The md5sum, if provided, along with the image name uniquely
 identifies an image uploaded to the CAL.
 ";
 type string;
 }
 }

 grouping vnf-configuration {
 container vnf-configuration {
 rwpb:msg-new VnfConfiguration;
 description
 "Information regarding the VNF configuration

OSM Information Model Open Source MANO Information Model

152

 is captured here. Note that if the NS contains
 multiple instances of the same VNF, each instance
 of the VNF may have different configuration";

 choice config-method {
 description
 "Defines the configuration method for the VNF.";
 case netconf {
 description
 "Use NETCONF for configuring the VNF.";
 container netconf {
 leaf target {
 description
 "Netconf configuration target";
 type enumeration {
 enum running;
 enum candidate;
 }
 }

 leaf protocol {
 description
 "Protocol to use for netconf (e.g. ssh)";
 type enumeration {
 enum None;
 enum ssh;
 }
 }

 leaf port {
 description
 "Port for the netconf server.";
 type inet:port-number;
 }
 }
 }

 case rest {
 description
 "Use REST for configuring the VNF.";
 container rest {
 leaf port {
 description
 "Port for the REST server.";
 type inet:port-number;
 }
 }
 }

 case script {
 description
 "Use custom script for configuring the VNF.
 This script is executed in the context of
 Orchestrator.";
 container script {
 leaf script-type {

Open Source MANO Information Model OSM Information Model

 153

 description
 "Script type - currently supported : bash, expect";
 type enumeration {
 enum bash;
 enum expect;
 }
 }
 }
 }

 case juju {
 description
 "Configure the VNF through Juju.";
 container juju {
 leaf charm {
 description "Juju charm to use with the VNF.";
 type string;
 }
 }
 }
 }

 container config-access {
 leaf mgmt-ip-address {
 description
 "IP address to be used to configure this VNF,
 optional if it is possible to resolve dynamically.";
 type inet:ip-address;
 }

 leaf username {
 description
 "username for configuration.";
 type string;
 }

 leaf password {
 description
 "Password for configuration access authentication.";
 type string;
 }
 }

 container config-attributes {
 description
 "Miscellaneous input parameters to be considered
 while processing the NSD to apply configuration";

 leaf config-priority {
 description
 "Configuration priority - order of configuration
 to be applied to each VNF in this NS,
 low number gets precedence over high number";
 type uint64;
 }

OSM Information Model Open Source MANO Information Model

154

 leaf config-delay {
 description
 "Wait (seconds) before applying the configuration to VNF";
 type uint64;
 }
 }

 list service-primitive {
 rwpb:msg-new ServicePrimitive;
 description
 "List of service primitives supported by the
 configuration agent for this VNF.";
 key "name";

 leaf name {
 description
 "Name of the service primitive.";
 type string;
 }

 list parameter {
 description
 "List of parameters to the service primitive.";
 key "name";
 uses primitive-parameter;
 }
 }

 list initial-config-primitive {
 rwpb:msg-new InitialConfigPrimitive;
 description
 "Initial set of configuration primitives.";
 key "seq";
 uses event-config;
 }

 leaf config-template {
 description
 "Configuration template for each VNF";
 type string;
 }
 }
 } // END - grouping vnf-configuration

 typedef virtual-link-type {
 description
 "Type of virtual link
 ELAN: A multipoint service connecting a set of VNFs
 // ELINE: For a simple point to point connection
 // between a VNF and the existing network.
 // ETREE: A multipoint service connecting one or
 // more roots and a set of leaves, but
 // preventing inter-leaf communication.";
 type enumeration {
 enum ELAN;
 // enum ETREE;

Open Source MANO Information Model OSM Information Model

 155

 // enum ELINE;
 }
 }

 grouping named-value {
 leaf name {
 type string;
 }

 leaf value {
 type string;
 }
 }

 typedef http-method {
 description
 "Type of HTTP operation";

 type enumeration {
 enum POST;
 enum PUT;
 enum GET;
 enum DELETE;
 enum OPTIONS;
 enum PATCH;
 }
 }

 typedef api-type {
 description
 "Type of API to fetch monitoring params";

 type enumeration {
 enum HTTP;
 enum NETCONF;
 enum SOAP;
 }
 }

 typedef json-query-method {
 description
 "The method to extract a value from a JSON response

 NAMEKEY - Use the name as the key for a non-nested value.
 JSONPATH - Use jsonpath-rw implementation to extract a value.
 OBJECTPATH - Use objectpath implementation to extract a value.";
 type enumeration {
 enum NAMEKEY;
 enum JSONPATH;
 enum OBJECTPATH;
 }
 }

 typedef param-value-type {
 description
 "The type of the parameter value";

OSM Information Model Open Source MANO Information Model

156

 type enumeration {
 enum INT;
 enum DECIMAL;
 enum STRING;
 }
 }

 typedef connection-point-type {
 description
 "Type of connection point
 VPORT: Virtual Port
 // VNIC_ADDR: Virtual NIC Address
 // PNIC_ADDR: Physical NIC Address
 // PPORT: Physical Port.";

 type enumeration {
 enum VPORT;
 }
 }

 typedef widget-type {
 description
 "Type of the widget, typically used by the UI.";
 type enumeration {
 enum HISTOGRAM;
 enum BAR;
 enum GAUGE;
 enum SLIDER;
 enum COUNTER;
 enum TEXTBOX;
 }
 }

 typedef cpu-feature-type {
 description
 "Enumeration for CPU features.

 AES: CPU supports advanced instruction set for
 AES (Advanced Encryption Standard).

 CAT: Cache Allocation Technology (CAT) allows
 an Operating System, Hypervisor, or similar
 system management agent to specify the amount
 of L3 cache (currently the last-level cache
 in most server and client platforms) space an
 application can fill (as a hint to hardware
 functionality, certain features such as power
 management may override CAT settings).

 CMT: Cache Monitoring Technology (CMT) allows
 an Operating System, Hypervisor, or similar
 system management agent to determine the
 usage of cache based on applications running
 on the platform. The implementation is
 directed at L3 cache monitoring (currently
 the last-level cache in most server and

Open Source MANO Information Model OSM Information Model

 157

 client platforms).

 DDIO: Intel Data Direct I/O (DDIO) enables
 Ethernet server NICs and controllers talk
 directly to the processor cache without a
 detour via system memory. This enumeration
 specifies if the VM requires a DDIO
 capable host.";

 type enumeration {
 enum PREFER_AES;
 enum REQUIRE_AES;
 enum PREFER_CAT;
 enum REQUIRE_CAT;
 enum PREFER_CMT;
 enum REQUIRE_CMT;
 enum PREFER_DDIO;
 enum REQUIRE_DDIO;
 enum REQUIRE_VME;
 enum PREFER_VME;
 enum REQUIRE_DE;
 enum PREFER_DE;
 enum REQUIRE_PSE;
 enum PREFER_PSE;
 enum REQUIRE_TSC;
 enum PREFER_TSC;
 enum REQUIRE_MSR;
 enum PREFER_MSR;
 enum REQUIRE_PAE;
 enum PREFER_PAE;
 enum REQUIRE_MCE;
 enum PREFER_MCE;
 enum REQUIRE_CX8;
 enum PREFER_CX8;
 enum REQUIRE_APIC;
 enum PREFER_APIC;
 enum REQUIRE_SEP;
 enum PREFER_SEP;
 enum REQUIRE_MTRR;
 enum PREFER_MTRR;
 enum REQUIRE_PGE;
 enum PREFER_PGE;
 enum REQUIRE_MCA;
 enum PREFER_MCA;
 enum REQUIRE_CMOV;
 enum PREFER_CMOV;
 enum REQUIRE_PAT;
 enum PREFER_PAT;
 enum REQUIRE_PSE36;
 enum PREFER_PSE36;
 enum REQUIRE_CLFLUSH;
 enum PREFER_CLFLUSH;
 enum REQUIRE_DTS;
 enum PREFER_DTS;
 enum REQUIRE_ACPI;
 enum PREFER_ACPI;

OSM Information Model Open Source MANO Information Model

158

 enum REQUIRE_MMX;
 enum PREFER_MMX;
 enum REQUIRE_FXSR;
 enum PREFER_FXSR;
 enum REQUIRE_SSE;
 enum PREFER_SSE;
 enum REQUIRE_SSE2;
 enum PREFER_SSE2;
 enum REQUIRE_SS;
 enum PREFER_SS;
 enum REQUIRE_HT;
 enum PREFER_HT;
 enum REQUIRE_TM;
 enum PREFER_TM;
 enum REQUIRE_IA64;
 enum PREFER_IA64;
 enum REQUIRE_PBE;
 enum PREFER_PBE;
 enum REQUIRE_RDTSCP;
 enum PREFER_RDTSCP;
 enum REQUIRE_PNI;
 enum PREFER_PNI;
 enum REQUIRE_PCLMULQDQ;
 enum PREFER_PCLMULQDQ;
 enum REQUIRE_DTES64;
 enum PREFER_DTES64;
 enum REQUIRE_MONITOR;
 enum PREFER_MONITOR;
 enum REQUIRE_DS_CPL;
 enum PREFER_DS_CPL;
 enum REQUIRE_VMX;
 enum PREFER_VMX;
 enum REQUIRE_SMX;
 enum PREFER_SMX;
 enum REQUIRE_EST;
 enum PREFER_EST;
 enum REQUIRE_TM2;
 enum PREFER_TM2;
 enum REQUIRE_SSSE3;
 enum PREFER_SSSE3;
 enum REQUIRE_CID;
 enum PREFER_CID;
 enum REQUIRE_FMA;
 enum PREFER_FMA;
 enum REQUIRE_CX16;
 enum PREFER_CX16;
 enum REQUIRE_XTPR;
 enum PREFER_XTPR;
 enum REQUIRE_PDCM;
 enum PREFER_PDCM;
 enum REQUIRE_PCID;
 enum PREFER_PCID;
 enum REQUIRE_DCA;
 enum PREFER_DCA;
 enum REQUIRE_SSE4_1;
 enum PREFER_SSE4_1;

Open Source MANO Information Model OSM Information Model

 159

 enum REQUIRE_SSE4_2;
 enum PREFER_SSE4_2;
 enum REQUIRE_X2APIC;
 enum PREFER_X2APIC;
 enum REQUIRE_MOVBE;
 enum PREFER_MOVBE;
 enum REQUIRE_POPCNT;
 enum PREFER_POPCNT;
 enum REQUIRE_TSC_DEADLINE_TIMER;
 enum PREFER_TSC_DEADLINE_TIMER;
 enum REQUIRE_XSAVE;
 enum PREFER_XSAVE;
 enum REQUIRE_AVX;
 enum PREFER_AVX;
 enum REQUIRE_F16C;
 enum PREFER_F16C;
 enum REQUIRE_RDRAND;
 enum PREFER_RDRAND;
 enum REQUIRE_FSGSBASE;
 enum PREFER_FSGSBASE;
 enum REQUIRE_BMI1;
 enum PREFER_BMI1;
 enum REQUIRE_HLE;
 enum PREFER_HLE;
 enum REQUIRE_AVX2;
 enum PREFER_AVX2;
 enum REQUIRE_SMEP;
 enum PREFER_SMEP;
 enum REQUIRE_BMI2;
 enum PREFER_BMI2;
 enum REQUIRE_ERMS;
 enum PREFER_ERMS;
 enum REQUIRE_INVPCID;
 enum PREFER_INVPCID;
 enum REQUIRE_RTM;
 enum PREFER_RTM;
 enum REQUIRE_MPX;
 enum PREFER_MPX;
 enum REQUIRE_RDSEED;
 enum PREFER_RDSEED;
 enum REQUIRE_ADX;
 enum PREFER_ADX;
 enum REQUIRE_SMAP;
 enum PREFER_SMAP;
 }
 }

 grouping vm-flavor {
 container vm-flavor {
 leaf vcpu-count {
 description
 "Number of vcpus for the VM.";
 type uint16;
 }

 leaf memory-mb {

OSM Information Model Open Source MANO Information Model

160

 description
 "Amount of memory in MB.";
 type uint64;
 }

 leaf storage-gb {
 description
 "Amount of disk space in GB.";
 type uint64;
 }
 }
 } //grouping vm-flavor

 grouping vswitch-epa {
 container vswitch-epa {
 leaf ovs-acceleration {
 description
 "Specifies Open vSwitch acceleration mode.
 MANDATORY: OVS acceleration is required
 PREFERRED: OVS acceleration is preferred";
 type enumeration {
 enum MANDATORY;
 enum PREFERRED;
 enum DISABLED;
 }
 }

 leaf ovs-offload {
 description
 "Specifies Open vSwitch hardware offload mode.
 MANDATORY: OVS offload is required
 PREFERRED: OVS offload is preferred";
 type enumeration {
 enum MANDATORY;
 enum PREFERRED;
 enum DISABLED;
 }
 }
 }
 }

 grouping hypervisor-epa {
 container hypervisor-epa {
 leaf type {
 description
 "Specifies the type of hypervisor.
 KVM: KVM
 XEN: XEN";
 type enumeration {
 enum PREFER_KVM;
 enum REQUIRE_KVM;
 }
 }
 leaf version {
 type string;
 }

Open Source MANO Information Model OSM Information Model

 161

 }
 }

 grouping host-epa {
 container host-epa {
 description "Specifies the host level EPA attributes.";
 leaf cpu-model {
 description
 "Host CPU model. Examples include: SandyBridge,
 IvyBridge";
 type enumeration {
 enum PREFER_WESTMERE;
 enum REQUIRE_WESTMERE;
 enum PREFER_SANDYBRIDGE;
 enum REQUIRE_SANDYBRIDGE;
 enum PREFER_IVYBRIDGE;
 enum REQUIRE_IVYBRIDGE;
 enum PREFER_HASWELL;
 enum REQUIRE_HASWELL;
 enum PREFER_BROADWELL;
 enum REQUIRE_BROADWELL;
 enum PREFER_NEHALEM;
 enum REQUIRE_NEHALEM;
 enum PREFER_PENRYN;
 enum REQUIRE_PENRYN;
 enum PREFER_CONROE;
 enum REQUIRE_CONROE;
 enum PREFER_CORE2DUO;
 enum REQUIRE_CORE2DUO;
 }
 }

 leaf cpu-arch {
 description "Host CPU architecture.";
 type enumeration {
 enum PREFER_X86;
 enum REQUIRE_X86;
 enum PREFER_X86_64;
 enum REQUIRE_X86_64;
 enum PREFER_I686;
 enum REQUIRE_I686;
 enum PREFER_IA64;
 enum REQUIRE_IA64;
 enum PREFER_ARMV7;
 enum REQUIRE_ARMV7;
 enum PREFER_ARMV8;
 enum REQUIRE_ARMV8;
 }
 }

 leaf cpu-vendor {
 description "Host CPU Vendor.";
 type enumeration {
 enum PREFER_INTEL;
 enum REQUIRE_INTEL;
 enum PREFER_AMD;

OSM Information Model Open Source MANO Information Model

162

 enum REQUIRE_AMD;
 }
 }

 leaf cpu-socket-count {
 description "Number of sockets on the host.";
 type uint64;
 }

 leaf cpu-core-count {
 description "Number of cores on the host.";
 type uint64;
 }

 leaf cpu-core-thread-count {
 description "Number of threads per cores on the host.";
 type uint64;
 }

 list cpu-feature {
 key "feature";
 description "List of CPU features.";
 leaf feature {
 description "CPU feature.";
 type cpu-feature-type;
 }
 }

 leaf om-cpu-model-string {
 description "Openmano CPU model string";
 type string;
 }

 list om-cpu-feature {
 key "feature";
 description "List of openmano CPU features";
 leaf feature {
 description "CPU feature";
 type string;
 }
 }
 }
 }

 grouping guest-epa {
 description "EPA attributes for the guest";
 container guest-epa {
 leaf trusted-execution {
 description "This VM should be allocated from trusted pool";
 type boolean;
 }

 leaf mempage-size {
 description
 "Memory page allocation size. If a VM requires

Open Source MANO Information Model OSM Information Model

 163

 hugepages, it should choose LARGE or SIZE_2MB
 or SIZE_1GB. If the VM prefers hugepages it
 should chose PREFER_LARGE.
 LARGE : Require hugepages (either 2MB or 1GB)
 SMALL : Doesn't require hugepages
 SIZE_2MB : Requires 2MB hugepages
 SIZE_1GB : Requires 1GB hugepages
 PREFER_LARGE : Application prefers hugepages";
 type enumeration {
 enum LARGE;
 enum SMALL;
 enum SIZE_2MB;
 enum SIZE_1GB;
 enum PREFER_LARGE;
 }
 }

 leaf cpu-pinning-policy {
 description
 "CPU pinning policy describes association
 between virtual CPUs in guest and the
 physical CPUs in the host.
 DEDICATED : Virtual CPUs are pinned to
 physical CPUs
 SHARED : Multiple VMs may share the
 same physical CPUs.
 ANY : Any policy is acceptable for the VM";
 type enumeration {
 enum DEDICATED;
 enum SHARED;
 enum ANY;
 }
 default "ANY";
 }

 leaf cpu-thread-pinning-policy {
 description
 "CPU thread pinning policy describes how to
 place the guest CPUs when the host supports
 hyper threads:
 AVOID : Avoids placing a guest on a host
 with threads.
 SEPARATE: Places vCPUs on separate cores,
 and avoids placing two vCPUs on
 two threads of same core.
 ISOLATE : Places each vCPU on a different core,
 and places no vCPUs from a different
 guest on the same core.
 PREFER : Attempts to place vCPUs on threads
 of the same core.";
 type enumeration {
 enum AVOID;
 enum SEPARATE;
 enum ISOLATE;
 enum PREFER;
 }

OSM Information Model Open Source MANO Information Model

164

 }

 list pcie-device {
 description
 "List of pcie passthrough devices.";
 key device-id;
 leaf device-id {
 description
 "Device identifier.";
 type string;
 }
 leaf count {
 description
 "Number of devices to attach to the VM.";
 type uint64;
 }
 }

 choice numa-policy {
 case numa-unaware {
 leaf numa-unaware {
 type empty;
 }
 }

 case numa-aware {
 container numa-node-policy {
 description
 "This policy defines numa topology of the
 guest. Specifically identifies if the guest
 should be run on a host with one numa
 node or multiple numa nodes. As an example
 a guest may want 8 vcpus and 4 GB of
 memory. But may want the vcpus and memory
 distributed across multiple numa nodes.
 The NUMA node 1 may run with 6 vcpus and
 3GB, and NUMA node 2 may run with 2 vcpus
 and 1GB.";

 leaf node-cnt {
 description
 "The number of numa nodes to expose to the VM.";
 type uint16;
 }

 leaf mem-policy {
 description
 "This policy specifies how the memory should
 be allocated in a multi-node scenario.
 STRICT : The memory must be allocated
 strictly from the memory attached
 to the NUMA node.
 PREFERRED : The memory should be allocated
 preferentially from the memory
 attached to the NUMA node";
 type enumeration {

Open Source MANO Information Model OSM Information Model

 165

 enum STRICT;
 enum PREFERRED;
 }
 }

 list node {
 key id;
 leaf id {
 description
 "NUMA node identification. Typically
 it's 0 or 1";
 type uint64;
 }

 list vcpu {
 key "id";
 description
 "List of vcpus to allocate on
 this numa node.";
 leaf id {
 type uint64;
 description "List of vcpus ids to allocate on
 this numa node";
 }
 }

 leaf memory-mb {
 description
 "Memory size expressed in MB
 for this NUMA node.";
 type uint64;
 }

 choice om-numa-type {
 description
 "Openmano Numa type selection";

 case cores {
 leaf num-cores {
 type uint8;
 }
 }

 case paired-threads {
 container paired-threads {
 leaf num-paired-threads {
 type uint8;
 }

 list paired-thread-ids {
 description
 "List of thread pairs to use in case of paired-
thread numa";
 max-elements 16;
 key thread-a;

OSM Information Model Open Source MANO Information Model

166

 leaf thread-a {
 type uint8;
 }

 leaf thread-b {
 type uint8;
 }
 }
 }
 }
 case threads {
 leaf num-threads {
 type uint8;
 }
 }
 }
 }

 }
 }
 }
 }
 }

 grouping provider-network {
 container provider-network {
 description "Container for the provider network.";
 leaf physical-network {
 description
 "Name of the physical network on which the provider
 network is built.";
 type string;
 }

 leaf overlay-type {
 description
 "Type of the overlay network.";
 type enumeration {
 enum LOCAL;
 enum FLAT;
 enum VLAN;
 enum VXLAN;
 enum GRE;
 }
 }
 leaf segmentation_id {
 description
 "Segmentation ID";
 type uint32;
 }
 }
 }

 grouping ns-service-primitive {
 list service-primitive {
 description

Open Source MANO Information Model OSM Information Model

 167

 "Network service level service primitives.";

 key "name";

 leaf name {
 description
 "Name of the service primitive.";
 type string;
 }

 list parameter {
 description
 "List of parameters for the service primitive.";

 key "name";
 uses manotypes:primitive-parameter;
 }

 list parameter-group {
 description
 "Grouping of parameters which are logically grouped in UI";
 key "name";

 leaf name {
 description
 "Name of the parameter group";
 type string;
 }

 list parameter {
 description
 "List of parameters for the service primitive.";
 key "name";
 uses manotypes:primitive-parameter;
 }

 leaf mandatory {
 description "Is this parameter group mandatory";
 type boolean;
 default true;
 }
 }

 list vnf-primitive-group {
 description
 "List of service primitives grouped by VNF.";

 key "member-vnf-index-ref";
 leaf member-vnf-index-ref {
 description
 "Reference to member-vnf within constituent-vnfds";
 type uint64;
 }

 leaf vnfd-id-ref {
 description

OSM Information Model Open Source MANO Information Model

168

 "A reference to a vnfd. This is a
 leafref to path:
 ../../../../nsd:constituent-vnfd
 + [nsd:id = current()/../nsd:id-ref]
 + /nsd:vnfd-id-ref
 NOTE: An issue with confd is preventing the
 use of xpath. Seems to be an issue with leafref
 to leafref, whose target is in a different module.
 Once that is resolved this will switched to use
 leafref";

 type string;
 }

 leaf vnfd-name {
 description
 "Name of the VNFD";
 type string;
 }

 list primitive {
 key "index";

 leaf index {
 description "Index of this primitive";
 type uint32;
 }

 leaf name {
 description "Name of the primitive in the VNF primitive ";
 type string;
 }
 }
 }

 leaf user-defined-script {
 description
 "A user defined script.";
 type string;
 }
 }
 }

 grouping monitoring-param {
 list http-endpoint {
 description
 "List of http endpoints to be used by monitoring params";
 key path;

 leaf path {
 description "The HTTP path on the management server";
 type string;
 }

 leaf https {
 description "Pick HTTPS instead of HTTP , Default is false";

Open Source MANO Information Model OSM Information Model

 169

 type boolean;
 default "false";
 }

 leaf port {
 description "The HTTP port to connect to";
 type inet:port-number;
 }

 leaf username {
 description "The HTTP basic auth username";
 type string;
 }

 leaf password {
 description "The HTTP basic auth password";
 type string;
 }

 leaf polling_interval_secs {
 description "The HTTP polling interval in seconds";
 type uint8;
 default 2;
 }

 leaf method {
 description
 "This is the method to be performed at the uri.
 GET by default for action";

 type manotypes:http-method;
 default "GET";
 }

 list headers {
 description "Custom HTTP headers to put on HTTP request";
 key key;
 leaf key{
 description "HTTP header key";
 type string;
 }

 leaf value{
 description "HTTP header value";
 type string;
 }
 }
 }

 list monitoring-param {
 description
 "List of monitoring parameters at the NS level";
 key id;
 leaf id {
 type string;
 }

OSM Information Model Open Source MANO Information Model

170

 leaf name {
 type string;
 }

 leaf http-endpoint-ref {
 type leafref {
 path "../../http-endpoint/path";
 }
 }

 leaf json-query-method {
 type json-query-method;
 default "NAMEKEY";
 }

 container json-query-params {
 leaf json-path {
 description
 "The jsonpath to use to extract value from JSON structure";
 type string;
 }
 leaf object-path {
 description
 "The objectpath to use to extract value from JSON structure";
 type string;
 }
 }

 uses monitoring-param-ui-data;
 uses monitoring-param-value;

 }
 }

 grouping monitoring-param-aggregation {
 typedef aggregation-type {
 description "aggregation-type";
 type enumeration {
 enum AVERAGE;
 enum MINIMUM;
 enum MAXIMUM;
 enum COUNT;
 enum SUM;
 }
 }

 leaf aggregation-type {
 type aggregation-type;
 }
 }

 grouping monitoring-param-ui-data {
 leaf description {
 type string;
 }

Open Source MANO Information Model OSM Information Model

 171

 leaf group-tag {
 description "A simple tag to group monitoring parameters";
 type string;
 }

 leaf widget-type {
 type manotypes:widget-type;
 }

 leaf units {
 type string;
 }
 }

 grouping monitoring-param-value {
 leaf value-type {
 type param-value-type;
 default "INT";
 }

 container numeric-constraints {
 leaf min-value {
 description
 "Minimum value for the parameter";
 type uint64;
 }
 leaf max-value {
 description
 "Maximum value for the parameter";
 type uint64;
 }
 }

 container text-constraints {
 leaf min-length {
 description
 "Minimum string length for the parameter";
 type uint8;
 }
 leaf max-length {
 description
 "Maximum string length for the parameter";
 type uint8;
 }
 }

 leaf value-integer {
 description
 "Current value for an integer parameter";
 type int64;
 }

 leaf value-decimal {
 description

OSM Information Model Open Source MANO Information Model

172

 "Current value for a decimal parameter";
 type decimal64 {
 fraction-digits 4;
 }
 }

 leaf value-string {
 description
 "Current value for a string parameter";
 type string;
 }
 }

 grouping control-param {
 list control-param {
 description
 "List of control parameters to manage and
 update the running configuration of the VNF";
 key id;

 leaf id {
 type string;
 }

 leaf name {
 type string;
 }

 leaf description {
 type string;
 }

 leaf group-tag {
 description "A simple tag to group control parameters";
 type string;
 }

 leaf min-value {
 description
 "Minimum value for the parameter";
 type uint64;
 }

 leaf max-value {
 description
 "Maximum value for the parameter";
 type uint64;
 }

 leaf current-value {
 description
 "Current value for the parameter";
 type uint64;
 }

 leaf step-value {

Open Source MANO Information Model OSM Information Model

 173

 description
 "Step value for the parameter";
 type uint64;
 }

 leaf units {
 type string;
 }

 leaf widget-type {
 type manotypes:widget-type;
 }

 leaf url {
 description
 "This is the URL where to perform the operation";

 type inet:uri;
 }

 leaf method {
 description
 "This is the method to be performed at the uri.
 POST by default for action";

 type manotypes:http-method;
 default "POST";
 }

 leaf payload {
 description
 "This is the operation payload or payload template as stringified
 JSON. This field provides the data to be sent for this operation
 call";

 type string;
 }
 }
 }

 grouping action-param {
 list action-param {
 description
 "List of action parameters to
 control VNF";
 key id;
 leaf id {
 type string;
 }

 leaf name {
 type string;
 }

 leaf description {
 type string;

OSM Information Model Open Source MANO Information Model

174

 }

 leaf group-tag {
 description "A simple tag to group monitoring parameter";
 type string;
 }

 leaf url {
 description
 "This is the URL where to perform the operation";
 type inet:uri;
 }

 leaf method {
 description
 "This is the method to be performed at the uri.
 POST by default for action";

 type manotypes:http-method;
 default "POST";
 }

 leaf payload {
 description
 "This is the operation payload or payload template to be sent in
 the data for this operation call";

 type string;
 }
 }
 }

 grouping input-parameter {
 description "";

 list input-parameter {
 description
 "List of input parameters";

 key xpath;

 leaf xpath {
 description
 "A an xpath that specifies which element in a descriptor is to be
 modified.";
 type string;
 }

 leaf value {
 description
 "The value that the element specified by the xpath should take
when a
 record is created.";
 type string;
 }

Open Source MANO Information Model OSM Information Model

 175

 }
 }

 grouping input-parameter-xpath {
 list input-parameter-xpath {
 description
 "List of xpaths to parameters inside the NSD
 the can be customized during the instantiation.";

 key "xpath";
 leaf xpath {
 description
 "An xpath that specifies the element in a descriptor.";
 type string;
 }

 leaf label {
 description "A descriptive string";
 type string;
 }

 leaf default-value {
 description " A default value for this input parameter";
 type string;
 }
 }
 }

 grouping nfvi-metrics {
 container vcpu {
 leaf label {
 description
 "Label to show in UI";
 type string;
 default "VCPU";
 }

 leaf total {
 description
 "The total number of VCPUs available.";
 type uint64;
 }

 leaf utilization {
 description
 "The VCPU utilization (percentage).";
 type decimal64 {
 fraction-digits 2;
 range "0 .. 100";
 }
 }
 }

 container memory {
 leaf label {
 description

OSM Information Model Open Source MANO Information Model

176

 "Label to show in UI";
 type string;
 default "MEMORY";
 }

 leaf used {
 description
 "The amount of memory (bytes) currently in use.";
 type uint64;
 }

 leaf total {
 description
 "The amount of memory (bytes) available.";
 type uint64;
 }

 leaf utilization {
 description
 "The memory utilization (percentage).";
 type decimal64 {
 fraction-digits 2;
 range "0 .. 100";
 }
 }
 }

 container storage {
 leaf label {
 description
 "Label to show in UI";
 type string;
 default "STORAGE";
 }

 leaf used {
 description
 "The amount of storage (bytes) currently in use.";
 type uint64;
 }

 leaf total {
 description
 "The amount of storage (bytes) available.";
 type uint64;
 }

 leaf utilization {
 description
 "The storage utilization (percentage).";
 type decimal64 {
 fraction-digits 2;
 range "0 .. 100";
 }
 }
 }

Open Source MANO Information Model OSM Information Model

 177

 container external-ports {
 leaf label {
 description
 "Label to show in UI";
 type string;
 default "EXTERNAL PORTS";
 }

 leaf total {
 description
 "The total number of external ports.";
 type uint64;
 }
 }

 container internal-ports {
 leaf label {
 description
 "Label to show in UI";
 type string;
 default "INTERNAL PORTS";
 }

 leaf total {
 description
 "The total number of internal ports.";
 type uint64;
 }
 }

 container network {
 leaf label {
 description
 "Label to show in UI";
 type string;
 default "NETWORK TRAFFIC";
 }

 container incoming {
 leaf label {
 description
 "Label to show in UI";
 type string;
 default "INCOMING NETWORK TRAFFIC";
 }

 leaf bytes {
 description
 "The cumulative number of incoming bytes.";
 type uint64;
 }

 leaf packets {
 description
 "The cumulative number of incoming packets.";

OSM Information Model Open Source MANO Information Model

178

 type uint64;
 }

 leaf byte-rate {
 description
 "The current incoming byte-rate (bytes per second).";
 type decimal64 {
 fraction-digits 2;
 }
 }

 leaf packet-rate {
 description
 "The current incoming packet (packets per second).";
 type decimal64 {
 fraction-digits 2;
 }
 }
 }

 container outgoing {
 leaf label {
 description
 "Label to show in UI";
 type string;
 default "OUTGOING NETWORK TRAFFIC";
 }

 leaf bytes {
 description
 "The cumulative number of outgoing bytes.";
 type uint64;
 }

 leaf packets {
 description
 "The cumulative number of outgoing packets.";
 type uint64;
 }

 leaf byte-rate {
 description
 "The current outgoing byte-rate (bytes per second).";
 type decimal64 {
 fraction-digits 2;
 }
 }

 leaf packet-rate {
 description
 "The current outgoing packet (packets per second).";
 type decimal64 {
 fraction-digits 2;
 }
 }
 }

Open Source MANO Information Model OSM Information Model

 179

 }
 }

 typedef alarm-severity-type {
 description "An indication of the importance or agency of the alarm";
 type enumeration {
 enum LOW;
 enum MODERATE;
 enum CRITICAL;
 }
 }

 typedef alarm-metric-type {
 description "The type of metrics to register the alarm for";
 type enumeration {
 enum CPU_UTILIZATION;
 enum MEMORY_UTILIZATION;
 enum STORAGE_UTILIZATION;
 }
 }

 typedef alarm-statistic-type {
 description
 "The type of statistic to used to measure a metric to determine
 threshold crossing for an alarm.";
 type enumeration {
 enum AVERAGE;
 enum MINIMUM;
 enum MAXIMUM;
 enum COUNT;
 enum SUM;
 }
 }

 typedef alarm-operation-type {
 description
 "The relational operator used to define whether an alarm should be
 triggered when, say, the metric statistic goes above or below a
 specified value.";
 type enumeration {
 enum GE; // greater than or equal
 enum LE; // less than or equal
 enum GT; // greater than
 enum LT; // less than
 enum EQ; // equal
 }
 }

 grouping alarm {
 leaf alarm-id {
 description
 "This field is reserved for the identifier assigned by the cloud
 provider";

 type string;
 }

OSM Information Model Open Source MANO Information Model

180

 leaf name {
 description "A human readable string to identify the alarm";
 type string;
 }

 leaf description {
 description "A string containing a description of this alarm";
 type string;
 }

 leaf vdur-id {
 description
 "The identifier of the VDUR that the alarm is associated with";
 type string;
 }

 container actions {
 list ok {
 key "url";
 leaf url {
 type string;
 }
 }

 list insufficient-data {
 key "url";
 leaf url {
 type string;
 }
 }

 list alarm {
 key "url";
 leaf url {
 type string;
 }
 }
 }

 leaf repeat {
 description
 "This flag indicates whether the alarm should be repeatedly
emitted
 while the associated threshold has been crossed.";

 type boolean;
 default true;
 }

 leaf enabled {
 description
 "This flag indicates whether the alarm has been enabled or
 disabled.";

 type boolean;

Open Source MANO Information Model OSM Information Model

 181

 default true;
 }

 leaf severity {
 description "A measure of the important or urgency of the alarm";
 type alarm-severity-type;
 }

 leaf metric {
 description "The metric to be tracked by this alarm.";
 type alarm-metric-type;
 }

 leaf statistic {
 description "The type of metric statistic that is tracked by this
alarm";
 type alarm-statistic-type;
 }

 leaf operation {
 description
 "The relational operator that defines whether the alarm should be
 triggered when the metric statistic is, say, above or below the
 specified threshold value.";
 type alarm-operation-type;
 }

 leaf value {
 description
 "This value defines the threshold that, if crossed, will trigger
 the alarm.";
 type decimal64 {
 fraction-digits 4;
 }
 }

 leaf period {
 description
 "The period defines the length of time (seconds) that the metric
 data are collected over in order to evaluate the chosen
 statistic.";
 type uint32;
 }

 leaf evaluations {
 description
 "This is the number of samples of the metric statistic used to
 evaluate threshold crossing. Each sample or evaluation is equal to
 the metric statistic obtained for a given period. This can be used
 to mitigate spikes in the metric that may skew the statistic of
 interest.";
 type uint32;
 }
 }

 typedef cloud-account-type {

OSM Information Model Open Source MANO Information Model

182

 description "cloud account type";
 type enumeration {
 enum aws;
 enum cloudsim;
 enum cloudsim_proxy;
 enum mock;
 enum openmano;
 enum openstack;
 enum vsphere;
 enum openvim;
 enum prop_cloud1;
 }
 }

 grouping host-aggregate {
 list host-aggregate {
 description "Name of the Host Aggregate";
 key "metadata-key";

 leaf metadata-key {
 type string;
 }
 leaf metadata-value {
 type string;
 }
 }
 }

 grouping placement-group-input {
 leaf cloud-type {
 type manotypes:cloud-account-type;
 }
 choice cloud-provider {
 case openstack {
 container availability-zone {
 description "Name of the Availability Zone";
 leaf name {
 type string;
 }
 }
 container server-group {
 description "Name of the Affinity/Anti-Affinity Server Group";
 leaf name {
 type string;
 }
 }
 uses host-aggregate;
 }
 case aws {
 leaf aws-construct {
 type empty;
 }
 }
 case openmano {
 leaf openmano-construct {
 type empty;

Open Source MANO Information Model OSM Information Model

 183

 }
 }
 case vsphere {
 leaf vsphere-construct {
 type empty;
 }
 }
 case mock {
 leaf mock-construct {
 type empty;
 }
 }
 case cloudsim {
 leaf cloudsim-construct {
 type empty;
 }
 }
 }
 }

 grouping cloud-config {
 list key-pair {
 key "name";
 description "Used to configure the list of public keys to be injected
as part
 of ns instantiation";

 leaf name {
 description "Name of this key pair";
 type string;
 }

 leaf key {
 description "Key associated with this key pair";
 type string;
 }
 }

 list user {
 rwpb:msg-new CloudConfigUser;
 key "name";
 description "List of users to be added through cloud-config";

 leaf name {
 description "Name of the user ";
 type string;
 }

 leaf user-info {
 description "The user name's real name";
 type string;
 }

 list key-pair {
 key "name";
 description "Used to configure the list of public keys to be

OSM Information Model Open Source MANO Information Model

184

injected as part
 of ns instantiation";

 leaf name {
 description "Name of this key pair";
 type string;
 }

 leaf key {
 description "Key associated with this key pair";
 type string;
 }
 }
 }
 }

 grouping placement-group-info {
 description "";

 leaf name {
 description
 "Place group construct to define the compute resource placement
strategy
 in cloud environment";
 type string;
 }

 leaf requirement {
 description "This is free text space used to describe the
intent/rationale
 behind this placement group. This is for human
consumption only";
 type string;
 }

 leaf strategy {
 description
 "Strategy associated with this placement group
 Following values are possible
 - COLOCATION: Colocation strategy imply intent to share the
physical
 infrastructure (hypervisor/network) among all
members
 of this group.
 - ISOLATION: Isolation strategy imply intent to not share the
physical
 infrastructure (hypervisor/network) among the
members
 of this group.
 ";
 type enumeration {
 enum COLOCATION;
 enum ISOLATION;
 }
 default "COLOCATION";
 }

Open Source MANO Information Model OSM Information Model

 185

 }

 grouping ip-profile-info {
 description "Grouping for IP-Profile";
 container ip-profile-params {

 leaf ip-version {
 type inet:ip-version;
 default ipv4;
 }

 leaf subnet-address {
 description "Subnet IP prefix associated with IP Profile";
 type inet:ip-prefix;
 }

 leaf gateway-address {
 description "IP Address of the default gateway associated with IP
Profile";
 type inet:ip-address;
 }

 leaf security-group {
 description "Name of the security group";
 type string;
 }

 list dns-server {
 key "address";
 leaf address {
 description "List of DNS Servers associated
with IP Profile";
 type inet:ip-address;
 }
 }

 container dhcp-params {
 leaf enabled {
 description "This flag indicates if DHCP is enabled or not";
 type boolean;
 default true;
 }

 leaf start-address {
 description "Start IP address of the IP-Address range associated
with DHCP domain";
 type inet:ip-address;
 }

 leaf count {
 description "Size of the DHCP pool associated with DHCP domain";
 type uint32;
 }
 }

 leaf subnet-prefix-pool {

OSM Information Model Open Source MANO Information Model

186

 description "VIM Specific reference to pre-created subnet prefix";
 type string;
 }
 }
 }

 grouping ip-profile-list {
 list ip-profiles {
 description
 "List of IP Profiles.
 IP Profile describes the IP characteristics for the Virtual-
Link";

 key "name";

 leaf name {
 description "Name of the IP-Profile";
 type string;
 }

 leaf description {
 description "Description for IP profile";
 type string;
 }

 uses ip-profile-info;
 }
 }

 grouping volume-info {
 description "Grouping for Volume-info";

 leaf description {
 description "Description for Volume";
 type string;
 }

 leaf size {
 description "Size of disk in GB";
 type uint64;
 }

 choice volume-source {
 description
 "Defines the source of the volume. Possible options are
 1. Ephemeral -- Empty disk
 2. Image -- Refer to image to be used for volume
 3. Volume -- Reference of pre-existing volume to be used
 ";

 case ephemeral {
 leaf ephemeral {
 type empty;
 }
 }

Open Source MANO Information Model OSM Information Model

 187

 case image {
 uses image-properties;
 }

 case volume {
 leaf volume-ref {
 description "Reference for pre-existing volume in VIM";
 type string;
 }
 }
 }

 container guest-params {
 description "Guest virtualization parameter associated with volume";

 leaf device_bus {
 description "Type of disk-bus on which this disk is exposed to
guest";
 type enumeration {
 enum ide;
 enum usb;
 enum virtio;
 enum scsi;
 }
 }

 leaf device_type {
 description "The type of device as exposed to guest";
 type enumeration {
 enum disk;
 enum cdrom;
 enum floppy;
 enum lun;
 }
 }
 }
 }

 }

