
© ETSI 2016

MWC DEMO COMPONENTS
TELEFÓNICA OPENMANO

Alfonso Tierno
Gerardo García

Francisco Javier Ramón

Pablo Montes
Antonio López

© ETSI 2016

OPENMANO: A PRACTICAL SOLUTION

Open: open source project released in GitHub under Apache 2 license

MANO: practical implementation of the reference architecture for Management
& Orchestration (MANO) under standardization at ETSI’s NFV ISG

OpenMANO follows an NFVO-centric approach, granting the deterministic allocation
of resources and with a simplified VNF instance lifecycle management at the NFVO

(VNF instantiation and termination)

© ETSI 2016

OPENMANO MAIN FEATURES

• FRIENDLY FOR NETWORK ENGINEERS

• NETWORK SCENARIOS

• Provides NFVO & VIM (+ GUI and CLI)

• Support for HIGH PERFORMANCE VNFs

(EPA-aware)

• REST-BASED APIs, OpenStack-friendly

• MULTIVIM: OpenVim, OpenStack

• MULTI-VENDOR by design

• No formal integration needed

• Assures optimal VNF deployment and IXC

• >30 VNFs tested

• OpenMANO code @ GitHub:
o Python-based

o 45k code lines

o Released with Apache 2 license

o 38 forks

© ETSI 2016

OPENMANO WORKS WITH NETWORK SCENARIOS VIA
DESCRIPTORS…

VNF

VNF
VNF

VNF
VNF

VM

VM VM

VM

VM

VM
VM

VM VM
VNF

VNF

VNF

VM

VM VM

VM

VM

VM
VM

VM VM

NS
(NETWORK SCENARIO)

VNF
(SW-BASED NODE)

+

-

A
b

stra
ctio

n

VM
(DEPLOYMENT UNIT)

© ETSI 2016

… PROVIDING ENHANCED PLATFORM AWARENESS (EPA)
NATIVELY…

x100

Line rate with 192
bytes frame size

x100

Having x100 times better scalability should be sufficiently appealing! 

With the right exposure of HW resources to the VNFs, carrier-grade

performance can be achieved.

© ETSI 2016

…WHILE A COMPREHENSIVE SET OF CONNECTIVITIES IS
AVAILABLE

Support of L2 networks with

passthrough, SR-IOV or virtio

interfaces:

• E-Line

• E-LAN

Traditional E-LAN based on virtual

bridges/switches is still supported

VNF VNF

VNF VNF

VNF VNF

© ETSI 2016

THIS COMBINATION HIDES LOW-LEVEL COMPLEXITY TO NETWORK
ENGINEERS WHILE ASSURES CONSISTENT DEPLOYMENTS

© ETSI 2016

OPENMANO COMPONENTS

OpenFlow
Controller

(FloodLight/ODL)

Image
storage

NFV Infrastructure

openvim server

OpenFlow switch

openvim API

OFC API

Compute nodes
openvim

client

openmano
server

openmano API openmano
client

openmano
gui

openMANO3 SW modules:
• openvim: server and client
• openmano: server and client
• openmano-gui: web interface

© ETSI 2016

OPENMANO VS. OPENVIM

openmano

openvim

openMANO

openmanoopenmano

openmano

• Tenant and datacenter management

• VNF catalogue management

• Network Scenarios catalogue mgmt

• NS deployment (and VNF deployment)

• Simplified VNF life cycle mgmt

openvim

• Compute node mgmt

• NFVI tenant mgmt

• Image mgmt

• Flavor mgmt

• Network and port mgmt

• VM deployment with EPA support

• Native and bridged layer 2 networks

© ETSI 2016

OPENMANO COMPONENTS
Openvim: the VIM module

(not part of OSM)

© ETSI 2016

OPENVIM: THE VIM MODULE (I)
RELATION TO NFVI

OpenFlow
Controller

(FloodLight/
ODL)

Image
storage

NFV Infrastructure

openvim
server

OpenFlow switch

openvim
API

OFC API

Compute nodes

openvim
client

openMANO

Openvim + OFC controller (Floodlight/ODL) = NFV VIM
- Interaction with compute nodes through libvirt
- Tested on compute nodes based on Intel Xeon E5 processors, Linux as host OS, KVM as

hypervisor
- Openflow switch controlled by proactive rules
- Image storage based on NAS. Image uploading is not managed by openvim

© ETSI 2016

OPENVIM: THE VIM MODULE (II)
MODES OF OPERATION

5 modes to run openvim

MODE Purpose Required infrastructure

normal Regular operation Compute nodes
OpenFlow switch

host only Deploy without OpenFlow switch
and controller

Compute nodes

development VNF development
(deploys without EPA)

“Low performance”
compute node

test Test openMANO
installation and API

-

OF only Test openflow integration Openflow switch

© ETSI 2016

OPENVIM: THE VIM MODULE (III)
MAIN CHARACTERISTICS

• Host mgmt
o Administrative primitive (managed by an independent thread)
o Host addition is done manually through a host descriptor file
o Hosts can be administratively set up or down

• Tenant mgmt
o Tenants delimit the property and scope of flavors, images, vms, nets,

etc.
o No identity mgmt: neither users nor roles

• Networks mgmt
o Networks are pure L2 networks:

 ptp: used to create an E-Line service between two data plane interfaces
 data: used to create an E-LAN service with data plane interfaces
 bridge_data: used to create an E-LAN service based on pre-provisioned linux

bridges

o No concept of subnet
o Public vs private (tenant scope)

ADMINISTRATIVE
PRIMITIVE

ORDINARY USE

ORDINARY USE

ORDINARY USE TO
CREATE

PUBLIC/SHARED
NETWORKS

© ETSI 2016

OPENVIM: THE VIM MODULE (IV)
MAIN CHARACTERISTICS

• Ports mgmt
o Ports are attached to networks (similarly to OpenStack)
o 2 types of ports:

 Instance-related ports: VM interfaces created and deleted as part of the VM life
cycle

 External ports: set explicitly by the network administrator in order to define
connections to PNF or external networks physically attached to the Openflow
switch

• Image mgmt
o Image uploading to the image repo must be done manually by the end

user
o Support of incremental images

• Flavor mgmt
o Openstack-like, but with new fields to indicate EPA requirements

• VM instance mgmt
o Besides traditional primitives (create, delete, list), allows actions over VMs

(shutdown, start, pause, resume, rebuild, reboot)

ORDINARY USE TO
CREATE EXTERNAL

PORTS

ADMINISTRATIVE
PRIMITIVE

TYPICALLY USED BY
OPENMANO

MODULE

TYPICALLY USED BY
OPENMANO

MODULE

ORDINARY USE

© ETSI 2016

OPENVIM: THE VIM MODULE (V)
COMPONENTS

VIM
DB

host_thread

openflow_thread

openvimd

OpenFlow
Controller

FloodLight/
ODL

vim_schema
utils

vim_db

httpserver

OPENVIM

Image
storage

Northbound API
openvimd.py
- Main program

host_thread.py
- Thread that interacts with the

compute node through libvirt to
manage VM instances

- One thread per compute node

httpserver.py
- Thread that manage northbound

API requests
- Two threads, for common requests

and for administrative ones

vim_db.py
- Module used to interact with the

openvim DB
- General table management and

transactional-based writings

vim_schema.py
- Dictionary schemas used to

validate API request content using
jsonschema library

openflow_thread.py
- Interacts with an OpenFlow

Floodligth/ODL controller to create
dataplane connections

floodlight
connector

ODL
connector

© ETSI 2016

OPENVIM: THE VIM MODULE (VI)
NORTHBOUND API

REST-based API, intentionally similar to Openstack API

Example 1. Removing a flavor
Request: DELETE /openvim/{tenant_id}/flavors/{flavor_id}
Response: 200 OK, 400 Bad Request, …

Example 2. Listing images
Request: GET /openvim/{tenant_id}/images
Response:
200 OK
{

"images": [
{ "id": "70a599e0-31e7-49b7-b260-868f441e862b", "path": /opt/image1.raw", "name": “image1"},
{ "id": "155d900f-4e14-4e4c-a73d-069cbf4541e6", "path": "/opt/image2.qcow2", "name": “image2“}

]
}

© ETSI 2016

OPENVIM: THE VIM MODULE (VII)
NORTHBOUND API DOCUMENTATION

URL: http://github.com/nfvlabs/openmano/raw/master/docs/openvim-api-0.6.pdf

http://github.com/nfvlabs/openmano/raw/master/docs/openvim-api-0.6.pdf

© ETSI 2016

OPENVIM: THE VIM MODULE (VIII)
OTHER DETAILS

• openvimd.cfg -> configuration file
o Mode of operation
o IP addresses and ports where the HTTP servers is listening to API

requests
o OFC parameters
o DB parameters
o Parameters for the new networks: VLAN tags range, compute node

bridges

• openvim client, Python-based
$ openvim -h

usage: openvim [-h] [--version]

{config,image-list,image-create,image-delete,image-edit,vm-list,vm-

create,vm-delete,vm-edit,vm-shutdown,vm-start,vm-rebuild,vm-reboot,vm-createImage,port-

list,port-create,port-delete,port-edit,port-attach,port-detach,host-list,host-add,host-

remove,host-edit,host-up,host-down,net-list,net-create,net-delete,net-edit,net-up,net-

down,flavor-list,flavor-create,flavor-delete,flavor-edit,tenant-list,tenant-

create,tenant-delete,tenant-edit,openflow-port-list,openflow-clear-all,openflow-net-

reinstall,openflow-net-list}

...

User program to interact with OPENVIM-SERVER (openvimd)

© ETSI 2016

OPENMANO COMPONENTS
Openmano: the NFVO+VNFM module

(part of OSM)

© ETSI 2016

OPENMANO
RELATION TO VIM

openmano
client

openvim
server

openmano
server

openMANO

openmano
API

openvim
API

CHARACTERISTICS

• Hides complexity to the network
engineer:
o No compute nodes
o No VMs
o Just nodes and links

• VNF definitions via descriptors

• NS definitions via descriptors

• NS instance creation and termination
(and associated VNF creation)openstack

server

openstack
API

© ETSI 2016

OPENMANO
TENANT AND DATACENTER MANAGEMENT

• Tenant mgmt
o Tenants delimit the property and scope of VNF and NS, and the actions over

them (instantiation, termination)
o Separate from openvim tenant space

 Different programs with different databases

• Datacenter mgmt
o A new datacenter must be added in order to interact with a specific pool of

resources. The datacenter is characterized by:
 Type: openvim (by default) or openstack
 URL of the VIM that manage that datacenter
 VIM configuration attributes, e.g. suppress security port

o Datacenters are not directly available to tenants
o An openmano tenant must be attached to a datacenter and a VIM tenant
o Datacenter nets can be inherited as external networks to be used

© ETSI 2016

OPENMANO
VNF CONCEPT AND STRUCTURE

• VNF: SW-based network function that can be deployed on an NFV datacenter
• VNF definition vs VNF instance  class vs object
• VNF structure: VNFCs/VMs, internal-connections, external-connections

Single-VM VNF Multi-VM VNF

© ETSI 2016

OPENMANO
VNF DESCRIPTOR

Name: unique name of the VNF
Description
External-connections:
• External interfaces of that VNF that can be connected in an NS to other VNFs or

networks
• Properties:

• name
• type: mgmt/bridge/data
• mapping to a VNFC interface

Internal-connections:
• It defines how VNFC/VMs are interconnected. This property is only required in case of

VNFs consisting of several VMs
• Properties:

• name
• type: mgmt/bridge/data
• list of interconnected VNFC/VMs (and their interfaces)

VNFC:
• List of components or virtual machines this VNF is composed of.

© ETSI 2016

OPENMANO
VNF DESCRIPTOR (CONTINUATION)

VNFC properties:
• name
• description
• image path:

• When a new VNF is added to the catalogue, new VM images are created in openvim
for each VNFC based on this path

• vcpus: number of virtual CPUs (traditional cloud requirement
• ram: number of virtual CPUs (traditional cloud requirement
• bridge-ifaces: virtio interfaces with no high I/O performance requirements. They will be

attached to Linux bridges in the host.
• numas: CPU, memory and interface requirements for high I/O performance

• CPU type (cores, paired threads, threads), number and pinning
• Memory (number of 1G hugepages)
• Interface details:

• Type: passthrough, VLAN-based SRIOV, MAC-based SRIOV
• Bandwidth
• Virtual PCI to assure appropriate identification at the VM

• devices: additional devices can be included (disk, cdrom, etc.) in this section

TRADITIONAL
REQUIREMENTS

EPA
REQUIREMENTS

© ETSI 2016

OPENMANO
NS CONCEPT AND STRUCTURE

• NS: topologies of VNFs and their interconnections
• NS definition vs NS instance  class vs object
• NS structure: VNFs, networks (external and internal)

Simple Complex

© ETSI 2016

OPENMANO
NS DESCRIPTOR

Name: unique name of the network scenario
Description
Topology: defines the VNFs and the networks interconnecting them

VNFs
• name
• VNF model (id or unique name) : must match a previously created VNF

Networks:
• name
• type:

 name of the network (in case of external/public datacenter network)
 bridge (for control plane internal/private networks)
 dataplane (for data plane internal/private networks)

• list of VNFs and interfaces connected to that network.

© ETSI 2016

OPENMANO
COMPONENTS

MANO
DB

openmanodhttpserver

nfvo_db

openmano_schemas
utils

nfvo

vim
connector

openvim

OPENMANO

Northbound API

openmanod.py
- Main program

httpserver.py
- Thread that manage northbound API

requests

nfvo.py
- NFVO engine, implementing all the

methods for the creation, deletion and
management of vnfs, scenarios and
instances

nfvo_db.py
- Module used to interact with the

openmano DB

openmano_schemas.py
- Dictionary schemas used to validate

API request and response content
using jsonschema library

vim/openstack connector.py
- Interacts with an openvim-

based/openstack VIM through the
openvim/openstack API

openstack
connector

openstack

© ETSI 2016

OPENMANO
NORTHBOUND API

• REST-based API
• Not documented

Example 1. Removing a VNF
Request: DELETE /openmano/{tenant_id}/vnfs/{vnf_id}
Response: 200 OK, …

Example 2. Listing network scenarios
Request: GET /openmano/{tenant_id}/scenarios
Response:
200 OK
{

"scenarios": [
{

"uuid": "ec1d744e-f56b-11e4-874f-52540032c4fa",
"created_at": "2015-05-08T12:20:59",
"description": "Simple network scenario consisting of a single VNF connected to an external network",
"name": "simple",
"public": false

},
]

}

© ETSI 2016

OPENMANO
OTHER DETAILS

• openmanod.cfg -> configuration file
o IP address and port where the HTTP server is listening to API requests
o DB parameters
o VNF repo folder where copies of the VNFD will be stored

• openmano client, Python-based

$ openmano -h

usage: openmano [-h] [--version]

{config,vnf-create,vnf-list,vnf-delete,scenario-create,scenario-

list,scenario-delete,scenario-deploy,scenario-verify,instance-scenario-list,instance-

scenario-delete,tenant-create,tenant-delete,tenant-list,tenant-edit,datacenter-

edit,datacenter-create,datacenter-delete,datacenter-list,datacenter-attach,datacenter-

detach,datacenter-net-edit,datacenter-net-update,datacenter-net-delete,datacenter-net-

list}

...

User program to interact with OPENMANO-SERVER (openmanod)

© ETSI 2016

OPENMANO COMPONENTS
Openmano-gui: web-based interface

(not part of OSM)

© ETSI 2016

OPENMANO-GUI: THE WEB-BASED INTERFACE
RELATION TO OPENMANO

Web browser
(e.g. Chrome, Firefox)

openmano
server

openMANO

openmano
API

openmano-gui

CHARACTERISTICS

• Access to network scenario definitions
and instances

• Drag&drop scenario builder with access
to the VNF catalogue

• Actions over network scenario instances
(stop, shutdown, delete, deploy) and
over specific VNF instances inside an NS
instance

CONFIGURATION

• config.php: configuration file

© ETSI 2016

OPENMANO-GUI: THE WEB-BASED INTERFACE (II)
NS DEFINITIONS AND INSTANCES

Button to access NS builder

NS definition

NS instance (currently running)

© ETSI 2016

OPENMANO-GUI: THE WEB-BASED INTERFACE (III)
NS BUILDER

Catalogue of VNFs and
external/public networks

Drag & drop panel

© ETSI 2016

OPENMANO-GUI: THE WEB-BASED INTERFACE (IV)
ACTIONS OVER NS INSTANCES

Status of VNF instances (and their VM instances)

Available actions

© ETSI 2016

WANT TO KNOW MORE ABOUT OPENMANO?

https://github.com/nfvlabs/openmano

All info at:

nfvlabs@tid.esQuestions/feedback/suggestions:

© ETSI 2016

