
 

 

 

 

 

 

OSM White Paper 

OSM VNF ONBOARDING 
GUIDELINES 
A White Paper prepared by the OSM VNF Onboarding Task Force 

 

Version 1.0  - June 2019 
 

ETSI 
06921 Sophia Antipolis CEDEX, France 
Tel +33 4 92 94 42 00 
info@etsi.org      
www.etsi.org 

 



 
 

 

OSM VNF ONBOARDING GUIDELINES 1 

Table of Contents 
Introduction 3 

Onboarding requirements 4 

Day 0 requirements 4 

Description of each VNF component 4 

Defining NFVI requirements 4 

Topology and management definition 5 

Images and cloud-init files 5 

Identifying the instantiation parameters 6 

Day 1 requirements 6 

Identifying dependencies between components 6 

Defining the required configuration for service initialization 7 

Identifying the need for instantiation parameters 8 

Day 2 requirements 8 

Identifying dependencies between components 8 

Defining all possible configurations for runtime operations 8 

Defining key performance indicators 8 

Defining closed-loop operations 9 

Day 0: VNF Instantiation & management setup 10 

Description of this phase 10 

Day-0 Onboarding guidelines 10 

Building the initial package 10 

Modelling advanced topologies 11 

Modelling specific networking requirements 14 

Building and adding cloud-init scripts 16 

Guidelines for EPA requirements 17 

Managing alternative images for specific VIM types 20 

Updating and testing instantiation of the VNF package 20 

Day 1: VNF Service initialization 22 

Description of this phase 22 

Day 1 Onboarding guidelines 22 



 
 

 

OSM VNF ONBOARDING GUIDELINES 2 

Adding Day 1 primitives to the descriptor 22 

Building a proxy charm 24 

Testing instantiation of the VNF package 29 

Day 2: VNF Runtime operations 30 

Description of this phase 30 

Day 2 Onboarding guidelines 30 

Adding Day 2 primitives to the descriptor 30 

Building a proxy charm 30 

Adding monitoring parameters 31 

Adding scaling operations 33 

Testing instantiation of the VNF package 35 

Known issues 36 

OSM Release FIVE 36 

v5.0.5 36 

 

  



 
 

 

OSM VNF ONBOARDING GUIDELINES 3 

Introduction 
The complete onboarding process implies producing a VNF Package that will be part of the OSM 
catalogue for its inclusion in a Network Service. 

The onboarded VNF should aim to fulfil the lifecycle stages it requires to function properly, which the 
NFV MANO layer should then be able to automate. The resulting package should thus include all the 
requirements, instructions and elements to achieve these lifecycle stages, which are: basic 
instantiation (a.k.a. “Day 0”), service initialization (a.k.a. “Day 1”) and runtime operations (a.k.a. “Day 
2”). 

 

More information on the delimitation of these stages can be found in the OSM Scope and 
Functionality document. 

This document provides guidelines for building the VNF Package to achieve each lifecycle stage 
successfully and is structured as follows: 

1. Onboarding requirements 

2. Day 0: VNF Instantiation & management setup 

3. Day 1: VNF Service initialization 

4. Day 2: VNF Runtime operations 

5. Known issues 

  

http://osm-download.etsi.org/ftp/Documentation/201902-osm-scope-white-paper/#!02-osm-scope-and-functionality.md
http://osm-download.etsi.org/ftp/Documentation/201902-osm-scope-white-paper/#!02-osm-scope-and-functionality.md


 
 

 

OSM VNF ONBOARDING GUIDELINES 4 

Onboarding requirements 
Each lifecycle stage targets specific configurations in the VNF. These are: management setup during 
instantiation (Day 0), service initialization right after instantiation (Day 1) and re-configuration during 
runtime (Day 2). 

In order to provide a VNF with as many capabilities for each lifecycle stage as possible, the following 
specific requirements should be addressed. 

Day 0 requirements 
During the Day 0 stage, the VNF is instantiated and the management access is established so that the 
VNF can be configured at a later stage. The main requirements to achieve this are: 

Description of each VNF component  
The main function of every VNF component (VDU) should be clearly described in order to facilitate 
the understanding of the VNF. For example: 

VDU Description 

vLB External frontend and load balancer 

uMgmt Universal VNF Manager (EM) 

sBE Service Backend of the platform 

Defining NFVI requirements 
These requirements refer to properties like the number of vCPUs, RAM GBs and disk GBs per 
component, as well as any other resource that the VNF components need from the physical 
infrastructure. For example: 

VDU vCPU RAM (GB) Storage (GB) External volume? 

vLB 2 4 10 N 

uMgmt 1 1 2 N 

sBE 2 8 10 Y 

For some VNFs, the Enhanced Platform Awareness (EPA) characteristics need to be defined when the 
VNF requires performance capabilities which are “higher than default” or any particular hardware 
architecture from the NFVI. Popular EPA attributes include: 

• Computer performance attributes: 

– CPU Pinning 

– NUMA Topology Awareness 

– Memory Page Size 

• Data plane performance attributes: 



 
 

 

OSM VNF ONBOARDING GUIDELINES 5 

– PCI-Passthrough 

– SR-IOV 

For example, vLB and sBE VDUs could require: 

• 2 dedicated vCPUs 

• Large-size memory pools 

• SR-IOV for eth1 and eth2 

Topology and management definition 
Ideally, a diagram should be used to quickly identify components and internal/external connections. 

 

Additional topology examples, along with sample descriptor files, can be found here. 

Images and cloud-init files 
The images for each component should be available in the format that corresponds to the main 
supported hypervisor. This image should contain the minimal configuration that makes it generic (not 

https://osm.etsi.org/wikipub/index.php/Reference_VNF_and_NS_Descriptors


 
 

 

OSM VNF ONBOARDING GUIDELINES 6 

scenario-specific) and with no hardcoded parameters that are relevant to the service. Furthermore, 
cloud-init files can be used to inject this minimal configuration to the VNF. Some examples: 

# Cloud-init using cloud-config format 
 
#cloud-config 
hostname: vnfc01 
chpasswd: 
  list: | 
    ubuntu:ubuntu 
  expire: False 
ssh_pwauth: True 

# Cloud-init using bash format for CentOS 
 
#!/bin/bash 
hostnamectl set-hostname vnfc01 
 
cat <<EOF > /tmp/ipcfg 
DEVICE=eth1 
BOOTPROTO=dhcp 
HWADDR=00:19:D1:2A:BA:A8 
ONBOOT=yes 
EOF 
 
echo -y | cp /tmp/ipcfg /etc/sysconfig/network-scripts/ifcfg-eth0 
systemctl restart network 

Identifying the instantiation parameters 
The VNF Day 0 configuration may require some parameters passed at instantiation time in order to 
fulfil the needs of the particular environment or of other VNFs in the Network Service. These 
parameters should be identified as early in the process as possible. 

Day 1 requirements 
The main objective of the Day 1 stage is to configure the VNF so it starts providing the expected 
service. To achieve this, the main requirements are: 

Identifying dependencies between components 
This may be required to identify instantiation parameters or special timing requirements. Examples 
of dependencies between components include: 

• Components needing parameters from other components or from the infrastructure to 
complete the parameter configuration. 

• Components depending on others for their configuration to be initialized. 



 
 

 

OSM VNF ONBOARDING GUIDELINES 7 

Defining the required configuration for service initialization 
This initial configuration will run automatically after the VNF is instantiated. It should activate the 
service delivered by the VNF and should be initially prepared in the language that the VNF supports. 
Once it is defined, it will need to be incorporated by the mechanism that the generic VNF Manager 
implements. For example: 

# A Python script (NETCONF/YANG in the example) 
 
from ncclient import manager 
import sys 
 
config = """ 
    <config> 
     <interface-configurations xmlns="..."> 
      ... 
     </interface-configurations> 
    </config> 
""" 
 
host = {'name':'VNF1', 'ip': '192.168.0.1'} 
interface_list = ['eth1', 'eth2'] 
 
m = manager.connect(host=host['ip'], username='ws', password='ws') 
 
for interface in interface_list: 
    response = m.edit_config(target='candidate', config=config.format(interface=interface)) 
    commit = m.commit() 
    print(commit) 
 
m.close_session() 

# An Ansible playbook (VyOS module in the example) 
 
- hosts: all 
  tasks: 
  - name: Configure the VNF initial NAT Rules 
    vyos_config: 
      lines: 
        - set nat destination rule 1 inbound-interface eth0 
        - set nat destination rule 1 destination port 80 
        - set nat destination rule 1 protocol tcp 
        - set nat destination rule 1 translation address {{destination_ip}} 



 
 

 

OSM VNF ONBOARDING GUIDELINES 8 

Identifying the need for instantiation parameters 
The VNF Day 1 configuration may require some parameters passed during instantiation in order to 
fulfil the needs of the particular environment or of other VNFs in the Network Service. These 
parameters should be identified as early in the process as possible. 

Day 2 requirements 
The main objective of Day 2 is to be able to re-configure the VNF so its behaviour can be modified 
during runtime, as well as be able to monitor its main KPIs and run scaling actions over it. To achieve 
this, the main requirements are: 

Identifying dependencies between components 
This process may be required to identify if a VNF component requires a parameter coming from 
other components for fulfilling runtime operations successfully. 

Defining all possible configurations for runtime operations 
The set of configurations should be available to be triggered from the orchestrator during the VNF 
runtime, either manually by the operator or automatically, based on a determined state. Once that 
set of configurations has been defined, it needs to be incorporated by the mechanism that the 
generic VNF Manager implements. Just as in Day 1, the set of configurations can be provided by 
Python scripts, Ansible playbooks, VNF-specific commands that run over SSH, REST API calls, or 
whatever the VNF makes available to expose its main operations. 

Defining key performance indicators 
The metrics that are relevant to the VNF should be specified, whether they are supposed to be 
collected from the infrastructure (through the VIM) or directly from the VNF (or its Element 
Manager, through any API, MIB or command that the VNF exposes). Some examples include: 

• Metrics typically collected from the VIM/NFVI: 

– CPU Usage 

– Memory Usage 

– Network activity (bandwidth, drops, etc.) 

– Storage consumption 

• Metrics collected from the VNF/EM (examples): 

– Active transactions/sessions/connections 

– Active users 

– Size of the database or a particular table 

– Application status 



 
 

 

OSM VNF ONBOARDING GUIDELINES 9 

Defining closed-loop operations 
Closed-loop operations are actions triggered by the status of a particular metric. The main use cases 
include: 

• Auto-scaling: a VNF component scales horizontally (out/in) to match the current demand. Some 
typical definitions that must be clear are: 

– How the VNF will load-balance the traffic once it scales. 

– Which components should scale, in what quantity, and based on which metric 
threshold or status. 

– How much time the system should wait between scaling requests. 

• Auto-healing: a VNF component is re-instantiated, reloaded or re-configured based on a service 
status. Some typical definitions that must be clear are: 

– Under which conditions the system should trigger an auto-healing action. 

– Which elements should be affected and at what level (re-instantiation, hard-reload, 
soft-reload, process restart, etc.) 

  



 
 

 

OSM VNF ONBOARDING GUIDELINES 10 

Day 0: VNF Instantiation & management setup 

Description of this phase 
The objective of this section is to provide the guidelines for including all the necessary elements in 
the VNF Package for its successful instantiation and management setup, so it can be further 
configured at later stages. 

The way to achieve this in OSM is to prepare the descriptor so that it accurately details the VNF 
requirements, prepare cloud-init scripts (if needed), and identify parameters that may have to be 
provided at later stages to further adapt to different infrastructures. 

Day-0 Onboarding guidelines 
Building the initial package 
The most straightforward way to build a VNF package from scratch is to use the existing script 
available at the OSM Devops repository. From a Linux/Unix-based system: 

Clone the OSM DevOps repository and access the tools folder. 
git clone https://osm.etsi.org/gerrit/osm/devops.git 
cd devops/descriptor-packages/tools 

Run the generator script with the desired options. 
./generate_descriptor_pkg.sh [options] [name] 

Most common options are: 

Parameter Scope Description Values 

-t package descriptor type vnfd 

-a package create package for the descriptor - 

-N package keep folder after tar is built - 

-c package create folder structure inside package - 

-d package destination of the folder path 

–nsd package create folder structure for NSD as well - 

–image vdu image name name 

–vcpu vdu vCPU number # 

–memory vdu RAM size [mb] 

–storage vdu disk size [gb] 

–cloud-init-file vdu cloud-init file name name 

–interfaces vdu interface number (additional to management) # 



 
 

 

OSM VNF ONBOARDING GUIDELINES 11 

–vendor vnf vendor name name 

For example: 

./generate_descriptor_pkg.sh -t vnfd -N -c -d /home/ubuntu \ 
-a --image haproxy_ubuntu --vcpu 2 --memory 4096 --storage 10 \ 
--cloud-init-file init_lb --interfaces 2 --vendor ACME --nsd vLB 

Note that we are adding the ‘nsd’ keyword to also create an NS Package that refers to this VNF 
Package, to be able to instantiate it and test it out. So the above example will create, in the 
/home/ubuntu folder: 

• vLB_vnfd → VNFD Folder 

• vLB_vnfd.tar.gz → VNFD Package 

• test_vnf01_nsd → NSD Folder 

• test_vnf01_nsd.tar.gz → NSD Package 

The VNFD Folder will contain the YAML file which models the VNF. This should be further edited to 
achieve the desired characteristics. 

Modelling advanced topologies 
Most topology types, along with sample descriptor files, can be found here. 

When dealing with multiple VDUs inside a VNF, it is important to understand the differences 
between external and internal connection points (CPs) and virtual link descriptors (VLDs). 

Component Definition 
Modelled 

at 

Internal VLD Network that interconnects VDUs within a VNF VNFD 

External 
VLD 

Network that interconnects different VNFs within an NS NSD 

Internal CP Element internal to a VNF, maps VDU interfaces to internal VLDs VNFD 

External CP Element exposed externally by a VNF, maps VDU interfaces to 
external VLDs 

NSD 

As VNF Package builders, we should clearly identify interfaces that i) are internal to the VNF and used 
to interconnect our own VDUs through internal VLDs, and ii) those we want to expose to other VNFs 
within a Network Service, using external VLDs. 

In this example from the 5th OSM Hackfest, we are building the following Multi-VDU topology: 

https://osm.etsi.org/wikipub/index.php/Reference_VNF_and_NS_Descriptors
https://osm.etsi.org/wikipub/index.php/5th_OSM_Hackfest


 
 

 

OSM VNF ONBOARDING GUIDELINES 12 

 

The VNFD would look like this: 

vnfd:vnfd-catalog: 
    vnfd: 
    -   ... 
        # An external CP should be used for VNF management 
        mgmt-interface: 
            cp: vnf-mgmt 
 
        # External CPs are exposed externally, to be referred at the NSD 
        connection-point: 
        -   id: vnf-mgmt 
            name: vnf-mgmt 
            short-name: vnf-mgmt 
            type: VPORT 
        -   id: vnf-data 
            name: vnf-data 
            short-name: vnf-data 
            type: VPORT 
 
        # Internal VLDs are defined globally at the VNFD 
        internal-vld: 
        -   id: internal 
            name: internal 
            short-name: internal 
            type: ELAN 



 
 

 

OSM VNF ONBOARDING GUIDELINES 13 

            internal-connection-point: 
            -   id-ref: mgmtVM-internal 
            -   id-ref: dataVM-internal 
 
        # Inside the VDU block, multiple VDUs, their interfaces and CPs are modelled 
        vdu: 
        -   id: mgmtVM 
            ... 
 
            # VDU Interfaces map to either an external or internal CP 
            interface: 
            -   name: mgmtVM-eth0 
                position: '1' 
                type: EXTERNAL 
                virtual-interface: 
                    type: VIRTIO 
                external-connection-point-ref: vnf-mgmt 
            -   name: mgmtVM-eth1 
                position: '2' 
                type: INTERNAL 
                virtual-interface: 
                    type: VIRTIO 
                internal-connection-point-ref: mgmtVM-internal 
 
            # Internal CPs are modelled inside each VDU 
            internal-connection-point: 
            -   id: mgmtVM-internal 
                name: mgmtVM-internal 
                short-name: mgmtVM-internal 
                type: VPORT 
 
        -   id: dataVM 
            ... 
            # VDU Interfaces map to either an external or internal CP 
            interface: 
            -   name: dataVM-eth0 
                position: '1' 
                type: INTERNAL 
                virtual-interface: 
                    type: VIRTIO 
                internal-connection-point-ref: dataVM-internal 
            -   name: dataVM-xe0 
                position: '2' 
                type: EXTERNAL 



 
 

 

OSM VNF ONBOARDING GUIDELINES 14 

                virtual-interface: 
                    type: VIRTIO 
                external-connection-point-ref: vnf-data 
 
            # Internal CPs are modelled inside each VDU                 
            internal-connection-point: 
            -   id: dataVM-internal 
                name: dataVM-internal 
                short-name: dataVM-internal 
                type: VPORT 

As an additional reference, let’s take a look at this Network Service Descriptor (NSD), where 
connections between VNFs are modelled using external CPs mapped to external VLDs like this: 

nsd:nsd-catalog: 
    nsd: 
    -   ... 
        # External VLDs are modelled globally 
        vld: 
        -   id: mgmtnet 
            name: mgmtnet 
            short-name: mgmtnet 
            type: ELAN 
            mgmt-network: 'true' 
            vim-network-name: mgmt 
            vnfd-connection-point-ref: 
 
            # Mapping between VNF's external CPs and the external VLD occurs here: 
            -   vnfd-id-ref: hackfest_multivdu-vnf 
                member-vnf-index-ref: '1' 
                vnfd-connection-point-ref: vnf-mgmt 
            -   vnfd-id-ref: hackfest_multivdu-vnf 
                member-vnf-index-ref: '2' 
                vnfd-connection-point-ref: vnf-mgmt 

Modelling specific networking requirements 
Even though it is not recommended to hard-code networking values in order to maximize the VNF 
Package uniqueness, there may be some freedom for doing this at internal VLDs, especially when 
they are not externally accessible by other VNFs and not directly accessible from the management 
network. 

The IP Profiles feature allows us to set some subnet specifics that can become useful. Further IP 
Profile settings can be found at the OSM Information Model Documentation. The following VNFD 
extract can be used as a reference: 

https://osm.etsi.org/wikipub/index.php/OSM_Information_Model


 
 

 

OSM VNF ONBOARDING GUIDELINES 15 

vnfd:vnfd-catalog: 
    vnfd: 
    -   ... 
        # IP profiles let us set subnet parameters like disabling a default GW 
        ip-profiles: 
        -   name: ip1 
            description: ip1 
            ip-profile-params: 
                ip-version: ipv4 
                dns-server: 8.8.8.8  
                gateway-address:      
                subnet-address: 192.168.100.0/24 
                dhcp-params: 
                  enabled: true 
 
        # The IP Profile name is then applied at the VLD level 
        internal-vld: 
        -   id: internal 
             ip-profile-ref: ip1 
             ... 

Specific IP and MAC addresses can also be set, although this practice is not recommended unless we 
use it in isolated connection points. 

vnfd:vnfd-catalog: 
    vnfd: 
    -   ... 
        # A specific IP address can be set at the VLD; it requires the subnet to be predefined by using an I
P Profile 
        internal-vld: 
        -   id: internal 
            ip-profile-ref: p1 
            ... 
            internal-connection-point: 
            -   id-ref: mgmtVM-internal 
                ip-address: 192.168.100.100 
        ... 
        vdu: 
        -   id: mgmtVM 
            ... 
 
            # A specific MAC address can also be set at the interface level 
            interface: 
            -   ... 
                mac-address: '01:02:03:01:02:03' 



 
 

 

OSM VNF ONBOARDING GUIDELINES 16 

Building and adding cloud-init scripts 
Cloud-init basics 
Cloud-init is normally used for Day 0 operations such as: 

• Setting a default locale 

• Setting an instance hostname 

• Generating instance SSH private keys or defining passwords 

• Adding SSH keys to a user’s .ssh/authorized_keys so they can log in 

• Setting up ephemeral mount points 

• Configuring network devices 

• Adding users and groups 

• Adding files 

Cloud-init scripts are referred at the VDU level. These can be defined inline or can be included in the 
cloud_init folder of the VNF package, then referred in the descriptor. 

For inline cloud-init definition, follow this: 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    vdu: 
    - ... 
      cloud-init: | 
        #cloud-config 
        ... 

For external cloud-init definition, proceed like this: 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    vdu: 
    - ...  
      cloud-init-file: cloud_init_filename 

Its content can have a number of formats, including #cloud-config and bash. For example, any of the 
following scripts sets a password in Linux. 

#cloud-config 
hostname: lb_vdu 
password: osm2018 



 
 

 

OSM VNF ONBOARDING GUIDELINES 17 

chpasswd: { expire: False } 
ssh_pwauth: True 

#cloud-config 
hostname: lb_vdu 
chpasswd: 
  list: | 
    ubuntu:osm2018 
  expire: False 

Additional information about cloud-init can be found in this documentation. 

Parameterizing Cloud-init files 
Beginning in OSM version 5.0.3, cloud-init files can be parameterized by using double curly brackets. 
For example: 

#cloud-config 
hostname: lb_vdu 
password: {{ password }} 
chpasswd: { expire: False } 
ssh_pwauth: True 

Such variables can then be passed at instantiation time by referring the VNF index it applies to, as 
well as the name and value of the variable. 

osm ns-create ... --config "{additionalParamsForVnf: [{member-vnf-index: '1', additionalParams:{pass
word: 'secret'}}]}" 

When dealing with multiple variables, it might be useful to pass a YAML file instead. 

osm ns-create ... --config-file vars.yaml 

Please note that variable naming convention follows Jinja2 (Python identifiers), so hyphens are not 
allowed. 

Support for Configuration Drive 
Besides cloud-init being provided as userdata through a metadata service, some VNFs will require 
storing the metadata locally on a configuration drive. 

The support for this is available at the VNFD model, as follows: 

supplemental-boot-data: 
    boot-data-drive: 'true' 

Guidelines for EPA requirements 
Most EPA features can be specified at the VDU descriptor level as requirements in the guest-epa 
section, which will be then translated to the appropriate request through the VIM connector. Please 
note that the NFVI should be pre-configured to support these EPA capabilities. 

http://cloudinit.readthedocs.io/en/latest/


 
 

 

OSM VNF ONBOARDING GUIDELINES 18 

Huge Pages 
Huge pages are requested as follows: 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    vdu: 
    -   ... 
        guest-epa: 
            mempage-size: LARGE 
            ... 

The mempage-size attribute can take any of these values: 

• LARGE: Require hugepages (either 2MB or 1GB) 

• SMALL: Doesn’t require hugepages 

• SIZE_2MB: Requires 2MB hugepages 

• SIZE_1GB: Requires 1GB hugepages 

• PREFER_LARGE: Application prefers hugepages 

CPU Pinning 
CPU pinning allows for different settings related to vCPU assignment and hyper threading: 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    vdu: 
    -   ... 
        guest-epa: 
            cpu-pinning-policy: DEDICATED 
            cpu-thread-pinning-policy: AVOID 
            ...  

CPU pinning policy describes the association between virtual CPUs in the guest and the physical CPUs 
in the host. Valid values are: 

• DEDICATED: Virtual CPUs are pinned to physical CPUs 

• SHARED: Multiple VMs may share the same physical CPUs. 

• ANY: Any policy is acceptable for the VM 

CPU thread pinning policy describes how to place the guest CPUs when the host supports hyper 
threads. Valid values are: 

• AVOID: Avoids placing a guest on a host with threads. 



 
 

 

OSM VNF ONBOARDING GUIDELINES 19 

• SEPARATE: Places vCPUs on separate cores, and avoids placing two vCPUs on two threads of the 
same core. 

• ISOLATE: Places each vCPU on a different core, and places no vCPUs from a different guest on 
the same core. 

• PREFER: Attempts to place vCPUs on threads of the same core. 

NUMA Topology Awareness 
This policy defines if the guest should be run on a host with one NUMA node or multiple NUMA 
nodes. 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    vdu: 
    -   ... 
        guest-epa: 
            numa-node-policy: 
                node-cnt: 2 
                mem-policy: STRICT 
                node: 
                    - id: 0 
                      memory-mb: 2048 
                      num-cores: 1 
                    - id: 1 
                      memory-mb: 2048 
                      num-cores: 1                    
            ...  

node-cnt defines the number of NUMA nodes to expose to the VM, while mem-policy defines if the 
memory should be allocated strictly from the ‘local’ NUMA node (STRICT) or not necessarily from 
that node (PREFERRED). The rest of the settings request a specific mapping between the NUMA 
nodes and the VM resources and can be explored in detail in the OSM Information Model 
Documentation 

SR-IOV and PCI-Passthrough 
Dedicated interface resources can be requested at the VDU interface level. 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    vdu: 
    -   ... 
        interface: 
        -   name: eth0 
            position: '1' 

https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
https://osm.etsi.org/wikipub/index.php/OSM_Information_Model


 
 

 

OSM VNF ONBOARDING GUIDELINES 20 

            type: EXTERNAL 
            virtual-interface: 
                type: SR-IOV             

Valid values for type, which specifies the type of virtual interface between VM and host, are: 

• PARAVIRT : Use the default paravirtualized interface for the VIM (virtio, vmxnet3, etc.). 

• PCI-PASSTHROUGH : Use PCI-PASSTHROUGH interface. 

• SR-IOV : Use SR-IOV interface. 

• E1000 : Emulate E1000 interface. 

• RTL8139 : Emulate RTL8139 interface. 

• PCNET : Emulate PCNET interface. 

Managing alternative images for specific VIM types 
The image name specified at the VDU level is expected to be either located at the images folder 
within the VNF package, or at the VIM catalogue. 

Alternative images can be specified and mapped to different VIM types, so that they are used 
whenever the VNF package is instantiated over the given VIM type. In the following example, the 
ubuntu1604 image is used by default (any VIM), but a different image is used if the VIM type is AWS. 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    vdu: 
    -   ... 
        image: ubuntu1604 
        alternative-images: 
        -   vim-type: aws 
            image: ubuntu/images/hvm-ssd/ubuntu-artful-17.10-amd64-server-20180509 

Updating and testing instantiation of the VNF package 
Once the VNF Descriptor has been updated with all the Day 0 requirements, its folder needs to be 
repackaged. For example, in Linux/UNIX, it would be something like: tar -cvfz vLB_vnfd.tar.gz 
vLB_vnfd/ 

A Network Service package containing at least this single VNF needs to be used to instantiate the 
VNF. This could be generated with the devops tool described earlier. 

Remember the objectives of this phase: 1. Instantiating the VNF with all the required VDUs, images, 
initial (unconfigured) state and NFVI requirements. 2. Making the VNF manageable from OSM (OSM 
should have SSH access to the management interfaces, for example) 

To test this out, the NS can be launched using the OSM client, like this: 



 
 

 

OSM VNF ONBOARDING GUIDELINES 21 

osm ns-create --ns_name [ns name] --nsd_name [nsd name] --vim_account [vim name] \ 
--ssh_keys [comma separated list of public key files to inject to vnfs] 

At launch time, extra instantiation parameters can be passed so that the VNF can be adapted to the 
particular instantiation environment or to achieve a proper inter-operation with other VNFs within 
the specific NS. More information about these parameters will be revised during the next chapter as 
part of Day 1 objectives, or can be reviewed here. 

The following sections will provide details on how to further populate the VNF Package to automate 
Day 1/2 operations. 

  

https://osm.etsi.org/wikipub/index.php/OSM_instantiation_parameters


 
 

 

OSM VNF ONBOARDING GUIDELINES 22 

Day 1: VNF Service initialization 

Description of this phase 
The objective of this section is to provide the guidelines to include all necessary elements in the VNF 
Package. This allows the exposed services inside the VNF to be automatically initialized right after the 
VNF instantiation. 

The main mechanism to achieve this in OSM is to build a Proxy Charm and include it in the descriptor. 

Day 1 Onboarding guidelines 
Adding Day 1 primitives to the descriptor 
This type of initial action will run automatically after instantiation and should be specified in the VNF 
descriptor. These can be defined at two different levels: 

• VDU-level: for a specific VDU, used when a VDU needs configuration, which is different than the 
VDU used for managing the VNF. 

• VNF-level: for the “management VDU”, used when the configuration applies to the VDU 
exposing an interface for managing the whole VNF. 

Initial primitives must include a primitive named config that passes information for OSM VCA to be 
able to authenticate and run further primitives into the VNF. The config primitive should provide, at 
least, the following parameters: 

• ssh-hostname: Typically used with the “rw_mgmt_ip” variable, which is automatically replaced 
by the VNF or VDU management IP address specified in the corresponding section. 

• ssh-username: The username used for authentication with the VDU. 

• ssh-password or ssh-public-key: A static password (not recommended unless it is changed 
afterwards) or a public-key from the OSM host. [TODO: confirm that if none is provided, there is 
an automatic injection with feature 1429?] 

In addition to the config primitive, more initial primitives can be run in the desired order so that the 
VNF initializes its services. Note that each of these additional actions will be detailed later in the 
proxy charm that implements them. 

The following example shows VNF-level initial primitives: both the expected config primitive in the 
beginning and also the configure-remote and start-service to be run in addition right after 
initialization. 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    mgmt-interface: 
        cp: vnf-cp0 
    ... 
    vnf-configuration: 



 
 

 

OSM VNF ONBOARDING GUIDELINES 23 

        initial-config-primitive: 
        -   name: config 
            parameter: 
            -   name: ssh-hostname 
                value: <rw_mgmt_ip> 
            -   name: ssh-username 
                value: admin 
            -   name: ssh-password 
                value: secretpassword 
            seq: '1' 
        -   name: configure-remote 
            parameter: 
            -   name: dest-ip 
                value: 10.1.1.1 
            seq: '2' 
        -   name: start-service 
            seq: '3'               
        juju: 
            charm: samplecharm 

Instantiation parameters can be used to define the values of these parameters at a later time, during 
the NS instantiation. The following example shows a VDU-level parameter with variables. Note that 
when using VDU-level primitives, an interface must be specified as the “management interface” for 
that specific VDU. 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    vdu: 
    - ... 
      interface:     
      - external-connection-point-ref: vdu1_mgmt 
        mgmt-interface: true 
        ... 
        vdu-configuration: 
            initial-config-primitive: 
            -   name: config 
                parameter: 
                -   name: ssh-hostname 
                    value: <rw_mgmt_ip> 
                -   name: ssh-username 
                    value: admin 
                -   name: ssh-password 
                    value: <password> 
                seq: '1' 



 
 

 

OSM VNF ONBOARDING GUIDELINES 24 

            -   name: configure-remote 
                parameter: 
                -   name: dest-ip 
                    value: <destination_ip> 
                seq: '2' 
            -   name: start-service 
                seq: '3'                 
            juju: 
                charm: samplecharm 

The values for the variables used at the primitive level are defined during instantiation, just like in the 
cloud-init case: 

osm ns-create ... --config "{additionalParamsForVnf: [{member-vnf-index: '1', additionalParams:{pass
word: 'secretpassword', destination_ip: '10.1.1.1'}}]}" 

Remember that when dealing with multiple variables, it might be useful to pass a YAML file instead. 

osm ns-create ... --config-file vars.yaml 

Building a proxy charm 
The charm is the element that implements the primitives or, put in other words, it provides the logic 
for the different configurations on the VNF. It is defined inside the “charms” folder of the VNF 
package. The contents of the charm must be built from a Linux machine. 

Method 1: Building a proxy charm the traditional way 
1. Install the charm tools and set up your environment. You might want to copy the export lines to 

your “~/.bashrc” profile file to automatically load them in the next session. 

snap install charm 
mkdir -p ~/charms/layers 
export JUJU_REPOSITORY=~/charms 
export LAYER_PATH=$JUJU_REPOSITORY/layers 
cd $LAYER_PATH 

b) A proxy charm includes, by default, the “VNF” and “basic” layers, which take care of the initial 
SSH connection to the VNF. Create the new personalized layer for your proxy charm: 

charm create samplecharm 
cd samplecharm 

Note: Charm names do not support underscores. 

c) Modify the basic files like this: 

# layer.yaml file 
includes: 
    - layer:basic 
    - layer:vnfproxy 



 
 

 

OSM VNF ONBOARDING GUIDELINES 25 

 
# metadata.yaml file 
name: samplecharm 
summary: this is an example 
maintainer: Gianpietro Lavado <gianpietro1@gmail.com> 
description: | 
  This is an example of a proxy charm deployed by Open Source Mano. 
tags: 
  - nfv 
subordinate: false 
series: 
    - trusty 
    - xenial 

d) Modify the “actions.yaml” file, adding all actions/primitives and their parameters. Note that the 
value of these parameters is defined at the VNFD, either statically or by using variables, as 
explained earlier. 

# actions.yaml file 
configure-remote: 
    description: "Configures the remote server" 
    params: 
        destination_ip: 
            description: "IP of the remote server" 
            type: string 
            default: "" 
start-service: 
    description: "Starts the service of the VNF" 

e) Create an “actions” folder and populate it with files representing each action. Filenames should 
match the name of the primitive, should be made executable with chmod +x and all must 
contain the following exact content. 

# actions/configure-remote and actions/start-service files 
cat <<'EOF' >> actions/set-server 
#!/usr/bin/env python3 
import sys 
sys.path.append('lib') 
 
from charms.reactive import main 
from charms.reactive import set_state 
from charmhelpers.core.hookenv import action_fail, action_name 
 
""" 
`set_state` only works here because it's flushed to disk inside the `main()` 
loop. remove_state will need to be called inside the action method. 



 
 

 

OSM VNF ONBOARDING GUIDELINES 26 

""" 
set_state('actions.{}'.format(action_name())) 
 
try: 
    main() 
except Exception as e: 
    action_fail(repr(e)) 
EOF 

f) Open the respective file at the ‘reactive/’ folder. This will be used to code, in Python, the actual 
actions that will run through SSH when each primitive is triggered. Note that any variable can 
be recovered in two ways: 

• Using the config() function if the variable belongs to that specific primitive. 

• Using the action_get('name-of-parameter') function to get any other parameter. 

The following example provides an idea of the contents of a reactive file. 

# reactive/samplecharm.py file 
@when('actions.configure-remote') 
def configure_remote(): 
    err = '' 
    # Variables should be retrieved, if needed 
    cfg = config() 
    mgmt_ip = cfg['ssh-hostname'] 
    destination_ip = action_get('dest-ip') 
    try: 
        # Commands to be run through SSH should go here 
        cmd = "vnfcli set license " + mgmt_ip + " server " + destination_ip 
        result, err = charms.sshproxy._run(cmd) 
    except: 
        action_fail('command failed:' + err) 
    else: 
        action_set({'output': result}) 
    finally: 
        remove_flag('actions.configure-remote') 
 
@when('actions.start-service') 
def start_service(): 
    err = '' 
    # Variables should be retrieved, if needed     
    try: 
        # Commands to be run through SSH should go here     
        cmd = "sudo service vnfoper start" 
        result, err = charms.sshproxy._run(cmd) 



 
 

 

OSM VNF ONBOARDING GUIDELINES 27 

    except: 
        action_fail('command failed:' + err) 
    else: 
        action_set({'output': result}) 
    finally: 
        remove_flag('actions.start-service')         

g) If your proxy charm layer needs some extra dependencies, the debian or pip package should be 
added to the layer.yaml file. This is done through the ‘packages’ and ‘python_packages’ options 
inside the layer, for example: 

includes: 
- "layer:basic" 
- "layer:ansible-base" 
- "layer:vnfproxy" 
options: 
  basic: 
    use_venv: false 
    packages: ["build-essential","libssl-dev"] 
    python_packages: ["pyyaml"] 

h) Finally, build the charm with charm build and copy the resulting folder (in this case the 
~/charms/builds/simplecharm directory) inside the charms folder of your VNF Package. 

Further information about building charms can be found here. 

Method 2: Using proxy charm generators 
To date, the only supported generator is Ansible, which means that a proxy charm can be 
automatically populated based on an Ansible Playbook. 

A sample Ansible playbook would look like this: 

# This sample playbook applies to a VyOS router 
# The hosts where the playbook will be executed will automatically contain the IP address of the VDU,
 in a /etc/ansible/hosts file at the charm container 
- hosts: vyos-routers 
  # note that the following setting is needed in most cases 
  connection: local 
  tasks: 
  - name: configure the remote device 
    vyos_config: 
      lines: 
        - set nat destination rule 1 inbound-interface eth0 
        - set nat destination rule 1 destination port 80 
        - set nat destination rule 1 protocol tcp 
        - set nat destination rule 1 translation address {{dest_ip}} 

https://osm.etsi.org/wikipub/index.php/Creating_your_own_VNF_charm_(Release_THREE)


 
 

 

OSM VNF ONBOARDING GUIDELINES 28 

Once the Ansible playbook has been tested against your VNF, the procedure to incorporate it in a 
charm is as follows: 

1. Create your environment and charm in the traditional way (that is, steps (a) and (b) from the 
previous method) 

2. Clone the devops repository elsewhere and copy the generator files to your charm root folder. 
For example: cp -r ~/devops/descriptor-packages/tools/charm-generator/* ./ [TODO: migrate 
to binary] 

3. Install the dependencies of the generator with sudo pip3 install -r requirements.txt 

4. Run the generator, which will populate all the required files automatically. It requires an Ansible 
playbook to be copied inside a new “playbooks” folder under the charm root directory, and the 
primitive to be named “playbook” (by default). The following example runs the generator with 
the minimal options. 

python3 generator-runner.py --ansible --summary "Configures VNF using Ansible" \ 
--maintainer "Gianpietro Lavado <glavado@whitestack.com>" \ 
--description "Configures VNF using Ansible" 

e) Adjust the “reactive” file as desired, for example, if you wish to pass some parameters to your 
playbook (which supports Jinja) 

@when('actions.playbook') 
def playbook(): 
    try: 
 
        # getting a variables from the config primitive 
        cfg = config() 
        mgmt_ip = cfg['ssh-hostname'] 
        # a sample on passing a specific file to the playbook, considering that the charm will be located a
t the /var/lib/juju/agents folder 
        config_file = charms.libansible.find('config.conf', '/var/lib/juju/agents/') 
 
        # populating an object with the variables 
        dict_vars = {'dest_ip': mgmt_ip,'config_file': config_file} 
 
        # running the playbook along with the given variables 
        result = charms.libansible.execute_playbook('playbook.yaml', dict_vars) 
    except: 
        exc_type, exc_value, exc_traceback = sys.exc_info() 
        err = traceback.format_exception(exc_type, exc_value, exc_traceback) 
        action_fail('playbook failed: ' + str(err)) 
    else: 
        action_set({'output': result}) 



 
 

 

OSM VNF ONBOARDING GUIDELINES 29 

    finally: 
        remove_flag('actions.playbook') 

f) Finally, build the charm with charm build and copy the resulting folder (in this case the 
“~/charms/builds/simplecharm” directory) inside the “charms” folder of your VNF Package. 

Once the VNF is launched, the results from running the generator will be found inside the proxy 
charm lxc container, at the “/var/log/ansible.log” file. If not successful, it could indicate the need for 
other possible modifications which are applicable for certain VNFs. 

Note: some VNFs will not pass some SSH pre-checks that Ansible performs in some operations (SFTP, 
SCP, etc.) In those cases, it has been noted that ansible_connection=ssh, which is a default set of the 
generator, needs to be disabled. This preset would need to be deleted from the 
lib/charms/libansible.py file, create_hosts function. [TODO: explore an enhancement to the Ansible 
Generator, to be as generic as possible] 

Testing instantiation of the VNF package 
Remember the objective of this phase: to configure the VNF automatically so it starts providing the 
expected service. 

To test this out, the NS can be launched using the OSM client, like this: 

osm ns-create --ns_name [ns name] --nsd_name [nsd name] --vim_account [vim name] --ssh_keys [c
omma separated list of public key files to inject to vnfs] 

Furthermore, and as mentioned earlier, extra instantiation parameters can be passed so that the 
VNF can be adapted to the particular instantiation environment or to achieve a proper inter-
operation with other VNFs in the specific NS. 

For example, if using IP Profiles to predefine subnet values, a specific IP address could be passed to 
an interface like this: 

osm ns-create ... --config '{vnf: [ {member-vnf-index: "1", internal-vld: [ {name: internal, ip-profile: {...
}, internal-connection-point: [{id-ref: id1, ip-address: "a.b.c.d"}] ] } ], 
    additionalParamsForVnf...}' 

When dealing with multiple fixed IP addresses, variables or other additions to the original descriptor, 
it might be useful to pass a YAML file instead. 

osm ns-create ... --config-file ip-vars.yaml 

As you can see, the parameters being defined during instantiation follow the information model 
structure. Further information and examples about these parameters can be reviewed here. 

After deployment is done, proxy charms can be monitored and debugged by using the juju status and 
juju debug-log commands, respectively. If proxy charms need to be started in any particular order, 
please note that the order of proxy charm initialization follows the order in which ‘constituent VNFs’ 
are listed at the NSD, but the actual operations could be executed in a different order, depending on 
the time it takes for each proxy charm container to be ready. 

https://osm.etsi.org/wikipub/index.php/OSM_instantiation_parameters


 
 

 

OSM VNF ONBOARDING GUIDELINES 30 

Day 2: VNF Runtime operations 

Description of this phase 
The objective of this section is to provide the guidelines for including all the necessary elements in 
the VNF Package so that it can be operated at runtime and therefore, re-configured on demand at 
any point by the end-user. Typical operations include re-configuration of services, KPI monitoring and 
the enablement of automatic, closed-loop operations triggered by monitored status. 

The main mechanism to achieve re-configuration in OSM is to build a proxy charm and include it in 
the descriptor. On the other hand, monitoring and VNF-specific policy management can be achieved 
by specifying the requirements at the descriptor (modifying monitored indicators and policies at 
runtime is not supported in OSM as of version 5.0.5) 

Day 2 Onboarding guidelines 
Adding Day 2 primitives to the descriptor 
Day-2 primitives are actions invoked on demand, so the config-primitive block is used instead of the 
initial-config-primitive block at the VNF or VDU level. 

For example, a VNF-level set of Day 2 primitives would look like this: 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    mgmt-interface: 
        cp: vnf-cp0 
    ... 
    vnf-configuration: 
        ... 
        config-primitive: 
        -   name: restart-service 
            parameter: 
            -   name: offset 
                default-value: 10 
                data-type: STRING 
        -   name: clean-cache 
            parameter: 
            -   name: force 
                default-value: true 
                data-type: BOOLEAN               
        juju: 
            charm: samplecharm 

Building a proxy charm 
Proxy charms for implementing Day 2 primitives are built exactly in the same way as when 
implementing Day 1 primitives. 



 
 

 

OSM VNF ONBOARDING GUIDELINES 31 

Adding monitoring parameters 
Collecting NFVI metrics 
In order to collect NFVI-level metrics associated to any given VDU and store them in the OSM TSDB 
(using Prometheus software), a set of monitoring-params should be declared both globally and at the 
VDU level. 

Only CPU and Memory are supported as of OSM version 5.0.5. For example: 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    vdu: 
    - id: "apache_vdu" 
      ...   
      monitoring-param: 
        - id: "apache_cpu_util" 
          # nfvi-metric name should match the supported set of metrics collectable by OSM through the VI
M connectors 
          nfvi-metric: "cpu_utilization" 
        - id: "apache_memory_util" 
          nfvi-metric: "average_memory_utilization"           
    ... 
    monitoring-param: 
    -   id: "apache_vnf_cpu_util" 
        name: "apache_vnf_cpu_util" 
        # only 'AVERAGE' aggregation is supported at this time 
        aggregation-type: AVERAGE 
        vdu-monitoring-param: 
          # vdu-ref should match the id of the VDU 
          vdu-ref: "apache_vdu" 
          # vdu-monitoring-param-ref should match the nfvi-metric id 
          vdu-monitoring-param-ref: "apache_cpu_util" 
    -   id: "apache_vnf_memory_util" 
        name: "apache_vnf_memory_util" 
        aggregation-type: AVERAGE 
        vdu-monitoring-param: 
          vdu-ref: "apache_vdu" 
          vdu-monitoring-param-ref: "apache_memory_util"            

Collecting VNF indicators 
As of OSM version 5.0.5, collection of VNF indicators is done by using proxy charms with the metrics 
layer. This is a simple method that has a couple of limitations: 

• Metrics are collected every five minutes and this can’t be changed. 

• Only positive decimal values of gauge or absolute types can be collected. 



 
 

 

OSM VNF ONBOARDING GUIDELINES 32 

At the charm level, the only file that needs to be created before building it is the “metrics.yaml” file 
at the root folder of the charm. 

For example, the following file collects active users and loads values from a Linux machine. 

# metrics.yaml file 
metrics: 
   users: 
     type: gauge 
     description: "# of users" 
     command: who|wc -l 
   load: 
     type: gauge 
     description: "5 minute load average" 
     command: cat /proc/loadavg |awk '{print $1}'          

More information on how to populate this file can be found in the Juju developer metrics 
documentation. 

Once the charm has been created and included in the VNF Package, the descriptor needs to define 
the metrics to actually be collected by OSM. As with any charm, this can be done at a VNF or VDU 
level. 

For example, at the VNF level (a VDU that represents the VNF): 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    mgmt-interface: 
        cp: vnf-cp0 
    ... 
    vnf-configuration: 
      ... 
      juju: 
        # this is the name of the proxy charm 
        charm: metricscharm 
      metrics: 
        # metric names should match the ones specified at the metrics.yaml file 
        - name: users 
        - name: load 
    ... 
    monitoring-param: 
    -   id: "ubuntuvdu_users" 
        name: "ubuntuvdu_users" 
        aggregation-type: AVERAGE 
        vnf-metric: 
          # vnf-metric-name-ref should match the metric name specified at VNF/VDU level 

https://docs.jujucharms.com/2.5/en/developer-metrics


 
 

 

OSM VNF ONBOARDING GUIDELINES 33 

          vnf-metric-name-ref: "users" 
    -   id: "ubuntuvdu_load" 
        name: "ubuntuvdu_load" 
        aggregation-type: AVERAGE 
        vnf-metric: 
          vnf-metric-name-ref: "load" 

This other example does the same, but at a specific VDU level: 

vnfd:vnfd-catalog: 
  vnfd: 
  - ... 
    vdu: 
    - ... 
      interface: 
      # remember that for any VDU that runs a charm, a management interface needs to be specified 
      - external-connection-point-ref: vdu1_mgmt 
        mgmt-interface: true 
      ... 
      vdu-configuration: 
        ... 
        juju: 
          charm: metricscharm 
        metrics: 
          - name: users 
          - name: load 
    ...    
    monitoring-param: 
    -   id: "ubuntuvdu_users" 
        name: "ubuntuvdu_users" 
        aggregation-type: AVERAGE 
        vdu-metric: 
          vdu-ref: "ubuntuvdu1" 
          vdu-metric-name-ref: "users" 
    -   id: "ubuntuvdu_load" 
        name: "ubuntuvdu_load" 
        aggregation-type: AVERAGE 
        vdu-metric: 
          vdu-ref: "ubuntuvdu1" 
          vdu-metric-name-ref: "load" 

Adding scaling operations 
Scaling operations happen at a VDU level and can be added with automatic triggers (closed-loop 
mode triggered by monitoring-param thresholds), or with a manual trigger. 



 
 

 

OSM VNF ONBOARDING GUIDELINES 34 

In both cases, a scaling-group-descriptor section must be added to the VNF descriptor. The following 
example enables VDU scaling based on a manual trigger (OSM API or CLI). 

vnfd:vnfd-catalog: 
  vnfd: 
  - ...                      
    scaling-group-descriptor: 
    -   name: "apache_vdu_manualscale" 
        # the following counts refer to "scaled instances" only 
        min-instance-count: 0 
        max-instance-count: 10 
        scaling-policy: 
        -   name: "manual_policy" 
            scaling-type: "manual" 
        vdu: 
        -   vdu-id-ref: apache_vdu 
            count: 1 

The following example defines a closed-loop scaling operation based on a specific monitoring 
parameter threshold. 

vnfd:vnfd-catalog: 
  vnfd: 
  - ...                      
    scaling-group-descriptor: 
    -   name: "apache_vdu_autoscale" 
        min-instance-count: 0 
        max-instance-count: 10 
        scaling-policy: 
        -   name: "apache_cpu_util_above_threshold" 
            scaling-type: "automatic" 
            threshold-time: 10 
            cooldown-time: 120 
            scaling-criteria: 
            -   name: "apache_cpu_util_above_threshold" 
                # this is the name of the monitoring-param to monitor 
                vnf-monitoring-param-ref: "apache_vnf_cpu_util"                 
                # scale-in threshold 
                scale-in-threshold: 20 
                scale-in-relational-operation: "LT" 
                # scale-out threshold 
                scale-out-threshold: 80 
                scale-out-relational-operation: "GT" 
        vdu: 



 
 

 

OSM VNF ONBOARDING GUIDELINES 35 

        -   vdu-id-ref: apache_vdu 
            count: 1 

More information about scaling can be found in the OSM Autoscaling documentation 

Testing instantiation of the VNF package 
Each of the objectives of this phase can be tested as follows: 

• Enabling a way of re-configuring the VNF on demand: primitives can be called through the 
OSM API, dashboard, or directly by running the following OSM client command: osm ns-action 
[ns-name] --vnf_name [vnf-index] --action_name [primitive-name] --params '{param-name-1: 
"param-value-1", param-name-2: "param-value-2", ...} 

• Monitor the main KPIs of the VNF: if correctly enabled, metrics will automatically start 
appearing in the OSM Prometheus database. More information on how to access, visualize and 
troubleshoot metrics can be found in the OSM Performance Management documentation 

• Enabling scaling operations: automatic scaling should be tested by making the metric reach the 
corresponding threshold, while manual scaling can be tested by using the following command 
(which also works when the “scaling-type” has been set to “automatic”): osm vnf-scale [ns-
name] [vnf-name] --scaling-group [scaling-group name] [--scale-in|--scale-out] 

  

https://osm.etsi.org/wikipub/index.php/OSM_Autoscaling
https://osm.etsi.org/wikipub/index.php/OSM_Performance_Management


 
 

 

OSM VNF ONBOARDING GUIDELINES 36 

Known issues 

OSM Release FIVE 
v5.0.5 
• Instantiation “additional” parameters can’t be passed with the config object through the 

dashboard. Being addressed by this fix. 

• Cloud-init will not allow parameter names with hyphens due to Jinja2 (Python Identifiers) 
implementation, but the error is misleading. Being addressed through this fix. 

• Proxy charms may not be deleted after NS is terminated, making the NS fail to be deleted. 
Workaround is to delete the LXC container with juju remove-machine command, then force the 
deletion of the NS. Being addressed by this fix. 

https://osm.etsi.org/gerrit/#/c/7357/
https://osm.etsi.org/gerrit/#/c/7444/
https://osm.etsi.org/gerrit/#/c/7325/


 

 

 
 
 
 

 
 
 
 
 

ETSI 
06921 Sophia Antipolis CEDEX, France 
Tel +33 4 92 94 42 00 
info@etsi.org   
www.etsi.org 

 
  
  

This White Paper is issued for information only. It does not constitute an official or agreed position of ETSI, 
nor of its Members. The views expressed are entirely those of the author(s). 
ETSI declines all responsibility for any errors and any loss or damage resulting from use of the contents of this 
White Paper . 
ETSI also declines responsibility for any infringement of any third party's Intellectual Property Rights (IPR), but 
will be pleased to acknowledge any IPR and correct any infringement of which it is advised . 
Copyright Notification 
Copying or reproduction in whole is permitted if the copy is complete and unchanged (including this copyright 
statement). 

  © European Telecommunications Standards Institute 2019. All rights reserved . 
DECT™, PLUGTESTS™, UMTS™, TIPHON™, IMS™, INTEROPOLIS™, FORAPOLIS™, and the TIPHON 
and ETSI logos are Trade Marks of ETSI registered for the benefit of its Members . 
3GPP™ and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP 
Organizational Partners . 
GSM™, the Global System for Mobile communication, is a registered Trade Mark of the GSM Association . 
 

mailto:info@etsi.org

	Introduction
	Onboarding requirements
	Day 0 requirements
	Description of each VNF component
	Defining NFVI requirements
	Topology and management definition
	Images and cloud-init files
	Identifying the instantiation parameters

	Day 1 requirements
	Identifying dependencies between components
	Defining the required configuration for service initialization
	Identifying the need for instantiation parameters

	Day 2 requirements
	Identifying dependencies between components
	Defining all possible configurations for runtime operations
	Defining key performance indicators
	Defining closed-loop operations


	Day 0: VNF Instantiation & management setup
	Description of this phase
	Day-0 Onboarding guidelines
	Building the initial package
	Clone the OSM DevOps repository and access the tools folder.
	Run the generator script with the desired options.

	Modelling advanced topologies
	Modelling specific networking requirements
	Building and adding cloud-init scripts
	Cloud-init basics
	Parameterizing Cloud-init files
	Support for Configuration Drive

	Guidelines for EPA requirements
	Huge Pages
	CPU Pinning
	NUMA Topology Awareness
	SR-IOV and PCI-Passthrough

	Managing alternative images for specific VIM types
	Updating and testing instantiation of the VNF package


	Day 1: VNF Service initialization
	Description of this phase
	Day 1 Onboarding guidelines
	Adding Day 1 primitives to the descriptor
	Building a proxy charm
	Method 1: Building a proxy charm the traditional way
	Method 2: Using proxy charm generators

	Testing instantiation of the VNF package


	Day 2: VNF Runtime operations
	Description of this phase
	Day 2 Onboarding guidelines
	Adding Day 2 primitives to the descriptor
	Building a proxy charm
	Adding monitoring parameters
	Collecting NFVI metrics
	Collecting VNF indicators

	Adding scaling operations
	Testing instantiation of the VNF package


	Known issues
	OSM Release FIVE
	v5.0.5



