

OSM White Paper

OSM SCOPE,
FUNCTIONALITY,
OPERATION AND
INTEGRATION
GUIDELINES

A White Paper prepared by the OSM End User Advisory Group

Issue 1

February 2019

ETSI

06921 Sophia Antipolis CEDEX, France

Tel +33 4 92 94 42 00

info@etsi.org

www.etsi.org

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 2

Authors

EUAG contributors

Andy Reid BT (EUAG Chairman)

Andrés González Telenor

Antonio Elizondo Armengol Telefónica

Gerardo García de Blas Telefónica

Min Xie Telenor

Pål Grønsund Telenor

Peter Willis BT

Phil Eardley BT

Francisco-Javier Ramón Salguero Telefónica (Editor)

OSM TSC/MDL review

Adam Israel Canonical

Alfonso Tierno Sepúlveda Telefónica

Francesco Lombardo EveryUp

Gianpietro Lavado Whitestack

Mark Shuttleworth Canonical

Matt Harper RIFT.io

Michael Marchetti Sandvine

Vanessa Little VMware

ETSI support and editorial review

Claire Boyer ETSI

Silvia Almagia ETSI

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 3

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 4

Contents

Contents 4

Introduction 5

Service Platform view and Layered Service Architectures 7

Services and their lifecycles 7

Types of functions in a service platform 8

Service Platform view vs. Platform Operation view 11

OSM Scope and Functionality 13

OSM Objetives and Scope 13

Service Platform view 15

Services offered Northbound 16

Services consumed Southbound 25

Platform Operation view: management of OSM as Manager Platform 32

Interaction with Common Services for platform operation 32

Authentication 32

Logging 32

Data exportation 33

Management of OSM 33

Authentication and Authorization Management 33

Catalogs and shared databases 35

Platform logs and alams 36

Security 36

OSM Integration Guidelines 37

Reference Architecture of Service Platforms and Common Management 37

Integration points 39

Service view (northbound and southbound) 40

Common auxiliary services and tools 41

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 5

Introduction

There are a number of new technologies which currently underpin the development in the telecoms

industry, many of which are brought together under 5G mobile. Much of the attention of 5G has

been focused on developments in the radio system, which promise a significant increase in the

download rates available to mobile devices. However, much the more radical promise 5G is built on

developments which are less visible. At the heart of these less visible developments is Network

Functions Virtualisation (NFV), which enables a quantum change in the flexibility of mobile networks

and their ability to support a much wider variety of services, many of which will exploit connected

sensor devices which come in the broad banner of the Internet of Things (IoT) as well as new

applications emerging in the automotive industry.

The power of NFV is that it enables the full automation of many processes that were previously

manual and slow. These processes include the deployment of service-specific functionality into the

network which is the basis of many of the plethora of anticipated IoT applications. In contrast to

current manual processes, the deployment of service specific functionality to wherever it is most

suitable in the network under NFV can be cheap and fast using full automation. It is therefore NFV

which a key technology component the anticipated explosion in services with 5G. Of course, NFV is

not restricted to mobile access and this process automation will have a similar impact on fixed

networks.

NFV can be broadly split into three parts:

1. The NFVI and VIMs/WIMs. The first part is the NFV infrastructure (NFVI) which hosts virtual

machines and/or containers and connects them together with virtual links (VLs). For the

purposes on this white paper, the infrastructure management systems (VIMs and WIMs) which

control the creation of virtual machines (VMs), containers and virtual links are also include with

the infrastructure.

2. VNFs, NSs, and Network Slices. The second part is the collection of VNFs themselves including

the interconnected composition of VNFs into network services (NSs) and the composition and

sharing of NSs to form network slices. The VNFs are interconnected compositions of specific

VMs and/or containers which are hosted on the NFVI.

3. Management and Orchestration (MANO). The third part is the management and orchestration

system which controls the life cycle of the VNFs, NSs, and network slices, controls and

maintains their configuration, and monitors their in-life health and performance.

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 6

NFV partitioning

Open Source MANO is a solution to this third part of NFV and this gives OSM its overall scope. OSM

aims to support the widest range of NFVI, VIMs, WIMs as well as the widest possible range of VNFs,

NSs, and Network Slices. As well as covering the widest possible range of NFVI and hosted functions

and services, OSM is an orchestration and management system which manages life -cycle,

configuration, and in-life aspects of the hosted functions.

This white paper sets out in more detail the scope and functionality of OSM including how OSM

interfaces to other systems. These other systems to which OSM interfaces, include the other parts of

NFV as well as non-virtualised network functions and existing OSS/BSS systems.

Chapter 2 describes the general architectural approach of OSM both to the way it is structured

internally and the way in which it interfaces to other systems. OSM takes a layered approach to

services and functions and reflects this in its own architecture as well as its interfacing to other

systems. OSM offers a service management interface (the OSM northbound interface) to its clients in

a higher service layer and constructs services as requested. OSM does this by consuming se rvices

from lower service layers, notably from the NFVI through service management interfaces provided

VIMs and WIMs. In addition to this service platform view, this chapter also describes a platform

operation view used by OSM to include interactions with other systems which support administration

and monitoring with the service layer which OSM controls.

Chapter 3 develops the service platform view and details the scope and functionality of the OSM

northbound interface though which the client service layers can request and manage the network

services, component VNFs, and network slices characteristic of the service layer managed by OSM. It

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 7

then describes the way OSM abstracts the services supplied by the heterogeneous mix of

infrastructure services requested and managed through the variety of VIM and WIM interfaces.

Chapter 4 develops the platform operation view detailing the scope and functionality of the essential

housekeeping functions of security management including authentication and authorisation along

with data logging and exportation of data to external systems.

Finally, Chapter 5 describes how OSM integrates with other existing systems and shows how OSM

can be introduced into a network operator’s existing OSS/BSS environment without requiring any

radical upheaval in OSS/BSS and the processes they support. The chapter details integration

interfacing in both the service platform view as well as the platform operation view.

Service Platform view and Layered Service Architectures

Services and their lifecycles
The provision of services of a growing sophistication and functionality usually requires a similar

degree of complexity in the internals of those services. Likewise, the new constructs for the new

wave of SW-defined networks that are intended to bring significant new functionalities and

flexibility, and also come with an internal machinery that is far from being trivial, and a proper

division of that intrinsic complexity is required in order to handle it in an efficient manner.

One of the most obvious examples of such a duality between functionality and inner complexity is

the case of a Network Slice, one of the key concepts that come with 5G networks. Unsurprisingly, the

complexity of a network slice is high, but the good news is that it is designed in a manner that favors

a manageable split into nested components, which, in turn, can be subdivided (and, hence, managed)

into simpler elements. Thus, a slice can be split in a set of Network Services, and such Network

Services can be split, in turn, into a set of virtual machines, virtual networks, physical nodes and,

potentially, transport connections.

Walking the same path but in reverse order —from the simplest components to the more

sophisticate ones— is the key for a successful management of these environments. As usually

happens in other fields in engineering, this complexity is intended to be more effectively handled in a

layered fashion, based on stacked service platforms. Thus, service layers can be stacked to create

composite services of growing complexity, up to building service objects of the required level of

complexity in each case.

In order to make effective the handling of this variety of “service objects”, they are intended to be

created and controlled on demand. The creation process of each of these “service objects”, along as

the rest of the rest of their lifecycle, should be provided “as a service” by a platform specialized on

providing a given type “service object”. Thus all the “service object” of a given type can be controlled

and monitored via the invocation of a well-known API from a well-known platform, which is

responsible of that “service object” lifecycle.

Moreover, since these platforms can be layered and invoke the APIs of lower level platforms,

platforms in upper layers can easily create and offer “as a service” complex composite objects in a

manner that scales in terms of operation in a simple and traceable manner, as depicted in the

following figure:

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 8

Service platform architecture

Examples of these kinds of platforms are an NFV Infrastructure (NFVI+VIM, providing VMs and virtual

networks), a SW-Defined Network (e.g. an SDTN, providing long-distance connections), or a Network

Service Platform (providing Network Services on demand composed of the other types of elements).

A key aspect of this type of architectures is that a given platform is not intended to provide “service

objects” exclusively to a single “upper” platform, but it can provide those “service objects” to

whichever platforms might request it via its API, bringing to the end to end architecture much higher

flexibility. That versatility will be intensively leveraged in the following sections.

Types of functions in a service platform
Two types of functions can be identified in a service platform: one (and only one) manager function

and, optionally, some managed functions.

In order to set up a platform, at least, it is required the capability of consuming the APIs from other

platforms available southbound, the ability to build a new type of “service object” and hand le its

lifecycle, and the capability of exposing on demand the new “service objects” via an appropriate API

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 9

northbound. Those capabilities are concentrated in the so-called “Management Function” of the

platform, which owns the lifecycle of the offered “service objects”, becoming the heart of the

platform itself.

Manager Function in a Service Platform consuming other services

However, we may wonder, what happens at the bottom layer of the stack? At the lowest level,

platforms do not have service platforms underneath to create services out of them, so they are

required to create their own service using the most basic set of available functions (e.g. compute

nodes, switches, storage backends, etc.). These other functions are not intended to offer “service

objects” on demand, but to offer a standalone functionality, which can be part of a pool and be

dynamically configured and monitored by the manager functions. Those final functions (or pools of

them) can be referred as managed functions. The relation between both types of functions to build a

platform placed at the bottom of the stack, is depicted in the following figure:

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 10

Manager Function in a Service Platform at the bottom of the service stack

In general, it is perfectly normal seeing both types of southbound interactions in many platforms,

combining the consumption of some basic services with the control of a number of managed

functions which belong to the platform itself, as depicted in the following picture:

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 11

Manager Function in a Service Platform with both managed functions and consumed services

In must be noted, however, that a managed function is not supposed to belong to more than one

platform at the same time, so that conflicts of being controlled by more than one manager can be

avoided.

Service Platform view vs. Platform Operation view
At this point of the discussion, we need to distinguish two complementary views that coexist in these

architectures and that can be considered at the same time.

On the one hand, there is the “Service Platform view”, thoroughly described above, focused on the

core functionalities that the architecture intends to offer. In all cases, the working assumption is the

existence of potentially frequent and dynamic requests related to those “service objects” that create

the main functionality, and which can benefit of large economies of scale in terms of efficient

operation given their large number and large dynamicity. These are intended to be highly automated

and coordinated, due to the recurrent benefits, and the fact that they tend to create a myriad of new

(virtual) components with their own lifecycle, really hard to control without a proper automation and

coordination structure. Some of the most prominent examples of this kind are the dynamic provision

of Network Services or Network Slices, which often imply a large cascade of dynamic operations

across the different layers of the stack that can be triggered on demand that which define a

potentially complex composite lifecycle.

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 12

On the other hand, we cannot forget that the functions (manager function and managed functions)

that compose the service platforms are also elements that need to be installed and bootstrapped,

and may be configured, updated and supervised, having potentially their own lifecycle. These O&M

actions over these elements (which constitute the “Platform Operation view”) are intended to be

sporadic and rather static, aiming to set boundary conditions for the “As a Service” aspect of the

service platform (e.g. create a new VIM tenant and assign a quota). Usually, the gains associated to

automation here are of lower scale, due to the lower recurrence, and may be selectively eased by

process-oriented wizards and dashboards.

In the case of the manager functions, both views coexist naturally in practice, with both paths

running orthogonally and separated by their purpose (either explicitly or implicitly by profiles), being

these O&M tasks a sort of “management of the manager” of a service platform. In practice, the

lifecycle of the manager may be synonym of the lifecycle of the service platform as a whole.

Service Platform view vs. Platform Operation view in a Manager Function

In the case of managed functions, these O&M interfaces (when required) sometimes are also

accessed by the manager function (that performs configurations and monitors the element) and

avoid conflicts by the split in the type of actions.

Platform Operation view in a Managed Function

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 13

Some tools to ease the O&M of the set of functions that constitute the architecture are often

provided by the different commercial products present in the architecture, and can be grouped

under an umbrella of common O&M tooling, so that they can benefit of supplementary common

services (e.g. DNS, LDAP, CA, etc.), common backends (e.g. to collect monitoring info), or even wrap

sequences of sparse O&M actions in a GUI wizard tools in order to ease them, either by making them

more visual or by guiding the operator to minimize errors (e.g. by narrowing down the available

options).

OSM Scope and Functionality

OSM Objetives and Scope
The goal of ETSI OSM (Open Source MANO) is the development of a community-driven production-

quality E2E Network Service Orchestrator (E2E NSO) for telco services, capable of modelling and

automating real telco-grade services, with all the intrinsic complexity of production environments.

OSM provides a way to accelerate maturation of NFV technologies and standards, enable a broad

ecosystem of VNF vendors, and test and validate the joint interaction of the orchestrator with the

other components it has to interact with: commercial NFV infrastructures (NFVI+VIM) and Network

Functions (either VNFs, PNFs or Hybrid ones).

OSM’s approach aims to minimize integration efforts thanks to four key aspects:

1. A well-known Information Model (IM), aligned with ETSI NFV, that is capable of modelling and

automating the full lifecycle of Network Functions (virtual, physical or hybrid), Network Services

(NS), and Network Slices (NSI), from their initial deployment (instantiation, Day-0, and Day-1) to

their daily operation and monitoring (Day-2).

– Actually, OSM’s IM is completely infrastructure-agnostic, so that the same model can

be used to instantiate a given element (e.g. VNF) in a large variety of VIM types and

transport technologies, enabling an ecosystem of VNF models ready for their

deployment everywhere.

2. OSM provides a unified northbound interface (NBI), based on NFV SOL005, which enables the

full operation of system and the Network Services and Network Slices under its control. In fact,

OSM’s NBI offers the service of managing the lifecycle of Network Services (NS) and Network

Slices Instances (NSI), providing as a service all the necessary abstractions to allow the complete

control, operation and supervision of the NS/NSI lifecycle by client systems, avoiding the

exposure of unnecessary details of its constituent elements.

https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
https://osm.etsi.org/gitweb/?p=osm/SOL005.git;a=blob;f=osm-openapi.yaml;h=5e00a2a935b02dac9d7e3b1d05adb88a6524a446;hb=HEAD

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 14

 OSM’s IM and NS operation via NBI

3. The extended concept of “Network Service” in OSM, so that an NS can span across the

different domains identified —virtual, physical and transport—, and therefore control the full

lifecycle of an NS interacting with VNFs, PNFs and HNFs in an undistinguishable manner along

with on demand transport connections among different sites.

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 15

 OSM interaction with different domains

4. In addition, OSM can also manage the lifecycle of Network Slices, assuming if required the role

of Slice Manager, extending it also to support an integrated operation.

Service Platform view
OSM provides the capability of realising one of the main promises derived from NFV and the dynamic

capabilities that it brings: creating networks on demand (“Network as a Service” or NaaS) for either

their direct exploitation by the service provider or for their potential commercialization to third

parties.

In that sense, OSM works as a Network Service Orchestrator (NSO), manager function of a Network

Service Platform (see Service Platform view and Layered Service Architectures for details), intended

to provide the capability of creating network services on demand and returning a service object ID

that can be used later as a handler to control the whole lifecycle and operations of the network

service via subsequent calls to OSM’s northbound API and monitor its global state in a conve nient

fashion.

In the case of OSM, there are two types of NaaS service objects that OSM is able to provide on

demand to support the NaaS capability: the Network Service (NS) and the Network Slice Instance

(NSI), being the latter a composition of several Network Services that can be treated as a single entity

(particularities of both types of NaaS service objects will be described in the next sections).

OSM, as manager function of a service platform, consumes services from other service platforms and

controls a number of managed functions in order to create its own composite higher-level service

https://osm.etsi.org/wikipub/index.php/Service_Platform_view_and_Layered_Service_Architectures

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 16

objects. Thus, OSM consumes services provided by the platform(s) in charge of the Virtual

Infrastructure (to obtain VMs, etc.) and the platform(s) in charge of the SW-Defined Network (to

obtain all the required kinds of inter-DC connections), and, once assembled, configures and monitors

the constituent network functions (VNFs, PNFs, HNFs) in order to control the LCM of the entire

NS/NSI to be offered on demand.

This view of OSM as part of a service platform architecture for NFV is summarized in the following

picture:

OSM in Service Platform view

Services offered Northbound

OSM as provider of Network Services (NS) on demand
The Network Service (NS) is the minimal building block in OSM to manage networks provided as a

service, which bundles in one single service object a set of interconnected network functions (VNFs,

PNFs and HNFs) which can span across different underlying technologies (virtual or physical),

locations (e.g. more or less centralized) and geographical areas (e.g. as part of the service of a large

multi-national corporate customer).

In order to enable effectively a “service on demand”, these newly created Network Services are not

provisioned as the result of a handcrafted or ad hoc procedure, but as the outcome of a simple and

well-known method based on API invocations (to OSM’s NBI) and descriptors following OSM’s

Information Model. These descriptions should faci litate the creation of Network Services composed

of different network appliances (VNFs, PNFs or HNFs) coming from different vendors, so that those

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 17

appliances (also called Network Functions or NF) can come pre-modelled by their provider and the

service provider can focus on modelling the Network Service itself.

Once a Network Service is entirely modelled (in a Network Service Package), the model works

effectively as a template that can be particularized (“parametrized”) upon NS creation time to

incorporate specific attributes for that NS instance, returning a unique NS instance ID, useful to drive

LCM operations at a later stage. OSM puts also in place all the necessary abstractions to allow the

complete control, operation and supervision of the NS lifecycle —in a normalized and replicable

fashion— by the client system (usually, OSS/BSS platforms). This NS instance “handler” is not

required to expose unnecessary details of its constituent elements, in order to minimize the impact

over the final service of potential changes in the NFs or the NS topology that did not intend to mean

a change on the actual service offer.

In order to achieve the desired level of flexibility and abstraction, OSM augments the concept of NS

with respect to ETSI NFV to incorporate physical and transport domains to enable real E2E services

that can be extended beyond virtual domains. Thus, it is possible in OSM:

• To combine in a single NS virtual network functions (VNFs), physical network functions (PNFs)

and, even, network functions composed of both physical and virtual elements (Hybrid Network

Functions, or HNFs), more typical of elements closer to the access network.

• To deploy such NS across a distributed network and even create inter-site transport

connections on demand, leveraging on the APIs of SW-Defined Network Platforms.

Both OSS and BSS platforms are expected to be consumers of the NS created on demand by OSM,

and sometimes may even keep the control of some constituent network functions of the NS if

required (this is quite useful to reuse legacy network nodes without requiring major changes in the

OSS). For that reason, OSM has also the capability to delegate selectively the control of specific

constituent NFs of the NS to the OSS/BSS platform if explicitly specified in the NS model , giving full

freedom to support legacy or hybrid scenarios as desired.

Lifecycle and operation of a Network Service
In the following sections, the stages related to the lifecycle and operation of the NS in the E2E

Network Orchestrator are thoroughly discussed and described, so that the API capabilities (and the

companion IM) can be better understood in a context of operation:

0. Preparation phase: Modelling

1. Onboarding

2. NS creation (day-0 and day-1)

3. NS operation (day-2)

4. NS finalization

It must be noted that, although the initial phase of modelling is a mere pre-requirement, prior to any

actual existence of the NS itself (and with no API interactions involved), it is required to understand

the NS lifecycle and the API calls that are available at later phases.

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 18

Phase #0: Modelling
OSM’s IM provides mechanisms to include the complete blueprint of the NS behaviour, including

both a full description of the NS topology, the lifecycle operations that are enabled, and the NS

primitives that are available, along with their automation code. Since Network Services are

composed, by definition, of one or several Network Functions (VNFs, PNFs or HNFs) of

heterogeneous types and internal behaviours —and likely to come from different providers—, the IM

provides a mean to let the provider describe the internal topology, required resources, procedures

and lifecycle of the Network Functions. This information come bundled in the so-called NF Packages.

This two-layered modelling approach has several advantages:

• Prevents that the designer of the NS Package (i.e. a Service Provider such as Telefónica) is

directly exposed to NF internals, and can focus on the composition of the NS itself, based

exclusively on the external properties and procedures of the NF.

• Enables the consistent and replicable validation of the NFs and their companion NF Packages

across all the supply chain, so that the NF vendor can guarantee that their elements are always

used and operated in the appropriate manner.

• Obviously, the same NF Package can be used in more than one NS with no additional modelling

work at NF level.

Phase #1: Onboarding
Once the models are ready, they can be injected to the system, so that they can be used as

templates for NS creation later on, in a process that is known as onboarding.

OSM’s NBI offers API calls to support CRUD (Create, Read, Update, Delete) operations over the

corresponding NS and NF Packages, in order to support the two-layered modelling approach

previously described (that can become three-layered in the case of Network Slices), the API supports

specific CRUD operations to handle the corresponding NS and NF Packages (and NST when

applicable) as independent but related objects. In these operations, and particularly in the

onboarding step, the necessary checks to validate in-model and cross-model consistency are

performed.

Phase #2: NS creation (day-0 and day-1)
Once the corresponding NS and NF Packages are successfully onboarded in OSM, there is all that is

needed to use them as templates for the actual NS creation. Accordingly, OSM offers API calls to

support CRUD (Create, Read, Update, Delete) operations related to NS instances.

In the case of the NS creation operation (also known as NS instantiation), OSM takes as input an NS

Package and, optionally, a set of additional deployment constraints (e.g. target deployment locations

for specific VNFs of the NS) and parameters to particularize in the NS, as explicitly allowed by the NS

Package.

During the NS creation, OSM interacts with different service platforms southbound (VIMs and WIMs)

and managed functions (NFs) to create the composite service object of the NS instance.

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 19

Phase #3: NS operation (day-2)
Once the NS has been successfully created, the NS instance becomes the only relevant object for

further operation, lifecycle and assurance actions.

Once an NS has been successfully created, the NS instance becomes the only relevant object for

further operation, lifecycle and assurance actions. The NS/NSI instance can be subject to different

types of API-driven operations, which fall into one of these categories:

• Common Lifecycle operations. There must be a number of API calls that allow to trigger well -

known standard actions potentially applicable to any NS, such as scaling actions,

pausing/resuming, on-demand monitoring requests, SW upgrades, etc.

• Actions derived from NS primitives. Besides operations potentially applicable to any NS/NSI,

each NS/NSI can have a set of operations that are relevant only for the specific functionality

that the NS/NSI offers, such as the addition of new subscribers, changes in internal routing, etc.

Those actions are enumerated and codified in the corresponding NS Package (that leverage, in

turn, on the atomic actions available in NF Packages) are exposed by the API as primary actions

available in that given NS/NSI.

 NS managed as a single entity via NS primitives

• Although not directly requested by the client system via API, it must be noted that other actions

can be internally triggered in the NS as a result of a closed-loop policies defined in the NS or NF

Packages. Usually, these actions involve the monitoring of some parameter of the NS or the NF

and the triggering of one of the aforementioned actions if a given threshold is reached

(e.g. automatic scale-out).

In fact, it is possible in OSM to work with metrics and alarms with great flexibility:

• Descriptor-defined alarms and metrics related to VDU-PDU level, but still explicitly co-related

with NS/NF instances.

• Descriptor-defined alarms and metrics related to application-specific (NF or NS) KPIs.

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 20

• It also allows on-demand requests to export alarms, events and metrics via Kafka bus, and a

smooth integration with the most popular frameworks, including ELK, Prometheus, and

Grafana.

It must be noted that OSM also allows the management of brownfield scenarios where some

elements had to be managed out-of-band by an external/legacy entity.

Phase #4: NS finalization
As any other on-demand service, it is possible to finalize a NS and release the resources that had

been assigned, preserving those components that should not be removed (e.g. persistent volumes).

The “delete” call of the API (from the of the aforementioned CRUD operations related to a NS) is in

charge of triggering that process and report on demand of its status of completion.

OSM as provider of Network Slices

Network Slices and Network Services
ETSI OSM is also capable to to provide Network Slices as a service, assuming also the role of Slice

Manager as per ETSI NFV EVE012 and 3GPP TR 28.801, extending it also to support an integrated

operation of Network Slice Instances (NSI) along with Network Service instances (NS).

The intended use of a Network Slice can be described as a particularization of the NaaS case but

more focused on the enablement of 5G use cases. This 3GPP spec defines a specific type of

underlying construct, the Network Slice, which is intended to provide the illusion of separated

specialized networks for different purposes. Unsurprisingly, Network Slices, in practice, operate as a

particular kind of Network Service or, more generally, as a set of various Network Services that are

treated as a single entity.

3GPP defines the relation between Network Slices and vanilla NS as per ETSI NFV in a very specific

manner, where Network Services become the so-called NS Subnets of the Network Slice, while the

Network Slice with its constituent NS Subnets can be deployed and operated as if they were a single

entity. The following picture depicts the intended relation between both concepts:

https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf
http://www.3gpp.org/DynaReport/28801.htm

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 21

Relation between Network Slices and vanilla ETSI NFV Network Services

Still consistent with the same modelling of a regular NS, these NS Subnets can be either exclusive to

an upper-level Network Slice (Dedicated NS Subnets) or shared between several Slices (Shared NS

Subnets), such as in the case of the RAN. Likewise, they would have their own lifecycle and

operations as any other NS, so no disruption in the modelling is created.

The Network Slice therefore has two key characteristics compared to a Network Service

• The Network Slice is composed from a number of Network Subnets

• A Network Slice Subnet is a share of a Network Service.

First, as it can be seen, the Network Slice concept defined in 3GPP overlaps almost completely with

the concept of “Nested NS” (an NS composed of various NS) as defined in ETSI NFV, with the only

addition of including some PNFs and Transport connections explicitly, features that are already

included in the extended concept of NS that OSM already provides. Therefore, the decision of

incorporating the Network Slice as a particular case of NS in OSM was rather natural.

Second, we can see that a single NS Subnet instance is, by definition, a share of a single NS instance.

However, as both NS Subnets and NS can be recursively composed (that is a NS Subnet can be

composed of NS Subnets and an NS can be composed of NSs) there is still full flexibility in the model.

This sharing relationship is the key new feature which slicing introduces and has an important

consequence for orchestration. This consequence is represented in the UML figure above by the fact

that the ‘isAShareOf’ relationship is an aggregation (open diamond) and not a composition (solid

diamond).

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 22

Most significantly, the NS Subnet cannot control the existence of the NS of which it is a share. As the

NS (for example a RAN NS) may be providing shares to other NS Subnets, when a network slice

instance which is sharing this NS is no longer needed and deleted, the composed NS Subnets may be

deleted, but the NS itself must not be deleted as it may well be still providing shares to other

network slices.

This means that the lifecycles of network slices with their constituent NS Subnets can be managed as

a composition hierarchy in same way the lifecycles of NSs and NFs can be managed as a composition

hierarchy, the two composition hierarchies must not be mixed together.

Lifecycle and operations of a Network Slice
As previously described, Network Slices operate as a grouping of a set of potentially shared Network

Services, which would become the so-called NS Subnets of the Network Slice. The Network Slice with

its constituent NS Subnets can be deployed and operated as if they were a single entity.

Alike Network Services, 3GPP TR 28.801 describes the lifecycle of the global Network Slice, which is

comprised of the four following phases:

5. Preparation. In the Preparation phase, the Network Slice (or Network Slice Instance, NSI) does

not exist yet. The preparation phase includes the creation and verification of Network Slice

Templates (NST), the onboarding of these, preparing the necessary network environment to be

used to support the lifecycle of NSIs, and any other preparations that are needed in the

network.

6. Instantiation, Configuration and Activation. During Instantiation/Configuration, all resources

shared/dedicated to the NSI have been created and are configured to a state where the NSI is

ready for operation. The Activation step includes any actions that make the NSI active (if

dedicated to the network slice, otherwise this takes place in the preparation phase). Network

slice instantiation, configuration and activation can include instantiation, configuration and

activation of other shared and/or non-shared network function(s).

7. Run-time. In the Run-time phase, the NSI is capable of handling traffic to support

communication services. The Run-time phase includes supervision/reporting (e.g. for KPI

monitoring), as well as activities related to modification: upgrade, reconfiguration, NSI scaling,

changes of NSI capacity, etc.

8. Decommissioning. The Decommissioning phase includes deactivation (taking the NSI out of

active duty) as well as the reclamation of dedicated resources (e.g. termination or re-use of

network functions) and configuration of shared/dependent resources. After decommissioning

the NSI does not exist anymore

Two non-mutually exclusive modes of deployment and management to support this lifecycle are

feasible in OSM: Full E2E Management (Integrated Modelling) and Standalone Management (Vanilla

NFV/3GPP).

http://www.3gpp.org/DynaReport/28801.htm

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 23

Full E2E Management (Integrated Modelling)
In this mode of operation, the Network Slice can be treated as kind of meta-Network Service, and can

be modelled as per the augmented NS lifecycle model described previously, so that OSM works also

as Slice Manager (Slice-M). For convenience, the NSI becomes as a first-class object of OSM.

Full E2E Management of Network Slices

In this mode, there is a natural match between the different phases of the lifecycle, where the

Network Slice Template (NST) and the Network Service Instance (NSI) play, respectively, the same

roles as the NS Package (the template defining a NS) and the NS instance in the general lifecycle of an

NS in OSM:

• Preparation is comprised of Phase #0 (Modelling) and Phase #1 (Onboarding).

• Instantiation, Configuration and Activation is equivalent to Phase #2 (NS Creation).

• Run-time provides a standardized subset of the operations available at Phase #3 (NS

Operation).

• Decommissioning is equivalent to Phase #4 (NS finalization).

There are some obvious advantages of this approach:

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 24

• The Preparation phase is largely simplified, as there is no split in the information models

between the 3GPP Slice Manager and the NFV Orchestrator (a “reduced” NSO specialized in

virtual components, as defined by ETSI NFV).

• Day-2 operations are integrated in a single platform and a single northbound interface.

• Possibility to add custom primitives to a given slice, alike the general NS constructs allow.

• Packages are generated, by definition, with a multi-vendor scenario in mind.

• The slices can include non-3GPP related network functions with no need of special integration.

Standalone Management (Vanilla NFV/3GPP)
Alike the case of legacy OSS/BSS described in the NS operations, it is also possible to allow an

external standalone system to manage the lifecycle of slices (as standalone Slice Manager) and

leverage on OSM simply as if it were a vanilla NFV Orchestrator (NFVO), using the regular (non-

augmented) SOL005 interface.

Standalone (Vanilla) Management of Network Slices

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 25

While this scenario is way less convenient in terms of operation than the one of integrated

management, it may be useful for small or vertical deployments of slicing and can also be supported

as fallback option.

In this mode of operation, the management of the slices happens entirely outside of OSM in a

separate management element, which would only leverage on vanilla NFVO capabilities of OSM. On

the other hand, from the perspective of OSM, the standalone slice management would look like just

any other OSS.

In consequence, the lifecycle operations of the Slice may require all the additional preparatory and

intermediate steps to guarantee an appropriate slice-NS mapping as defined by 3GPP:

• In this case, during the preparation phase, the resource requirement for an NST is realized by

one or more existing Network Service Descriptors that have been previously on-boarded on the

E2E Orchestrator (working as NFVO). The creation of a new NST can lead to requiring the

update of an existing NSD or generation of a new NSD followed by on-boarding the new NSD if

the slice requirements do not map to an already on-boarded NSD (i.e. available in the NSD

catalogue). Indeed, the Network Slice for the multiple Network Slice Instances may be

instantiated with the same NSD, in order to deliver exactly the same optimizations and features

but dedicated to different enterprise customers. On the other hand, a network slice intended to

support totally new customer facing services is likely to require a new NS and thus the

generation of a new NSD.

• The network slice instantiation step in the second phase needs to trigger the instantiation of

the underlying NSs. Vanilla NFV-MANO functions would only be involved in the network slice

configuration phase if the configuration of virtualisation-related parameters is required on one

or more of the constituent VNF instances.

OSM’s IM and NBI specifications
OSM provides a well-known, complete and thoroughly tested Information Model to facilitate an

accurate and sufficient description of the internal topology, procedures and lifecycle of Network

Services and Network Slices. ETSI OSM’s IM is openly (and freely) available for every industry player,

continuously evolved by a large Community of industrial players, and being pre-validated in its

intended E2E behaviour at the own OSM upstream community, so that new cloud and application

technologies can be taken into account as they emerge and mature. The latest official version of ETSI

OSM’s IM is always available as an up-to-date spec at OSM’s documentation and git repos.

On the other hand, OSM’s NBI provides a superset of ETSI NFV SOL005 API calls with the addition of

E2E NS operation capabilities and the ability to handle Network Slices. Alike the IM, the latest official

version of OSM’s NBI is openly available in OpenAPI format, and can be used as the authoritative

reference for interoperability northbound, even facilitating the automated generation of code for

client applications.

Services consumed Southbound

OSM is oriented to consume the services of two kinds service platforms commonly available in

industry:

https://osm.etsi.org/wikipub/index.php/OSM_Information_Model
https://osm.etsi.org/gitweb/?p=osm/SOL005.git;a=blob;f=osm-openapi.yaml;h=5e00a2a935b02dac9d7e3b1d05adb88a6524a446;hb=HEAD

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 26

• Virtual Infrastructure Platforms, each managed by a Virtual Infrastructure Manager (VIM),

which exposes an Or-Vi reference point northbound.

• Software-Defined Network Platforms, each managed by a WAN Infrastructure Manager

(WIM) (often a kind of SDN Controller), which exposes an Or-Wi reference point northbound.

In order to support the variety of alternative industry APIs that implement these reference points,

OSM has plugin models for both VIMs and WIMs, so that all the variety of commercial southbound

APIs are supported via their corresponding connectors.

VIMs as managers of Virtual Infrastructure Platforms
The functionality of providing chunks of the underlying physical resources dynamically is known in

industry as “Infrastructure as a Service” or IaaS, and it is the most basic building block that a cloud

can offer on demand. In our service platform view, the pool of resources that offers IaaS becomes a

Virtual Infrastructure Platform.

The manager function of this platform is the Virtual Infrastructure Manager (VIM), and is one of the

most popular platform managers in exploitation in industry. In order to perform this task, the VIM is

in charge of controlling a set of compute, memory, storage and network resources, and returning

them sliced as VMs. Thus, the VIM is in charge of controlling pools of compute nodes (i.e. servers,

including their hypervisor SW), virtual networking (vSwitches and, sometimes, physical switches), and

storage backends.

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 27

VIM as manager of Virtual Infrastructure Platform

In some advanced cases, the VIM can be deployed in conjunction of an SDN Platform, which provides

connectivity on demand adapted to the needs of the VIM:

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 28

VIM consuming services from an SDN Platform

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 29

It must be noted that in both configuration the service exposed by the VIM is undistinguishable

from the perspective of the northbound API, and hence to OSM.

Due to the variety of VIM APIs available and the requirement to be open to future types of

technologies, OSM provides a plugin model for the calls needed for the IaaS services required by

OSM to instantiate and manage a NS/NSI. As of today, ETSI OSM already supports out-of-the-box

(i.e. with no need of integration):

• Openstack-based VIMs (e.g. Canonical OpenStack, Red Hat OpenStack Platform, WindRiver

Titanium Cloud (4 and above), WhiteCloud, SuSE OpenStack, Mirantis OpenStack, ECEE,

FusionSphere, etc.)

• VMware VIO 4 and above.

• VMware vCloud Director

• Amazon Web Services (AWS)

• OpenVIM

SDN Assist
Most VIMs provide the automatic creation of network connectivity for management and signaling

interfaces but not for those that are dataplane intensive (use of PF passthrough or SR-IOV). In those

cases, the VIM is able to create virtual resources with Enhanced Platform Awareness (EPA)

requirements but cannot take care of providing the required underlay (physical) connectivity

between them.

In those cases, where the VIM does not support natively the management of underlay ne tworking,

OSM is able to supply the missing functionality of handling the underlay connectivity with the help of

an SDN controller, which manages a fabric where the compute nodes of the VIM are connected. This

unique functionality of OSM, which is called SDN Assist, enables OSM to:

• Provide the dataplane connectivity that the VIM is unable to manage.

• Treat the VIM+SDN Assist combo as if they there were a single augmented VIM, so that, from

user’s perspective they will behave like a regular unique manager function of a given Virtual

Infrastructure Platform.

In order to work properly, it is a pre-requirement to have a clear delineation between the knowledge

and responsibility of the VIM and the SDN controller:

• The VIM will be in charge of deploying the VMs and the overlay networks, and providing to

OSM the information about the compute nodes and interfaces assigned to the VMs.

• The SDN controller will be responsible of creating the underlay connectivity taking as boundary

conditions the switches and ports to be connected to the same network. The internal switching

topology of the datacentre will be known by the SDN controller, fed as part of the provisioning

activities (i.e. prior to any instantiation process).

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 30

In that scenario, OSM keeps the mapping between compute nodes and interfaces at VIM level and

the switch ports at SDN controller level.

Due to the variety of SDN controllers and the requirement to be open to future types of

technologies, OSM provides a plugin model for the calls needed for SDN Assist, namely , the ones

required to provide the intra-VIM underlay part (i.e. to assist effectively). As of today, OSM provides

SDN Assist plugins for for the following families of SDN Controllers:

• OpenDayLight (ODL)

• ONOS

• FloodLight

The following image depicts all the possible Or-Vi schemes, including SDN Assist:

Or-Vi schemes supported by OSM

OpenVIM
OSM also provides a reference VIM with EPA capabilities and underlay support, called OpenVIM,

which is shipped as part of OSM’s releases since Release ONE.

As a reference VIM, OpenVIM is particularly useful in the context of deployment that require high

I/O performance and efficiency (leveraging advanced EPA capabilities), deployments in the Edge,

where the footprint requirements for a VIM can be very low, and setups where software in the

compute nodes cannot be upgraded as often as the software of the control of the VIM.

Metrics and alarms
In the different VIMs, OSM supports the interaction with different existing frameworks to gather

metrics and alarms for different Virtual Domain technologies:

• AODH/Gnocchi for OpenStack

• VMware vRealise Ops Update

• AWS CloudWatch

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 31

Following the same approach as in other cases of API diversity, OSM uses a plugin model for VIM

metric frameworks, which normalizes the types of metrics a alarms for OSM, and which is easily

extensible to support additional frameworks and technologies.

SDN Controllers/WIMs as managers of Software-Defined Network Platforms
Another type of manager functions widely available are the SDN Controllers (SDNC) and their

specialized version for transport connections, the Controllers for Software-Defined Transport

Network (SDTN). Whenever these elements are invocated from an NSO such as OSM (as a superset

of an NFVO), can be also referred as WIMs (WAN Infrastructure Managers). In our service platform

view, the pool of connectivity resources that is offered here on demand becomes a Software-

Defined Network Platform.

Similarly to the role of the manager in other platforms, the key function of these WIMs is providing

connections on demand and offering an API to manage their lifecycle and monitor them consistently.

One of the key advantages of this approach is that WIM’s API aims to be largely independent of the

specific underlying elements, the network topology underneath and/or the switching technology

itself, so the use of these connections on-demand becomes highly convenient for the client platform

and leaves a lot of freedom to design and evolve the physical network underneath.

In order to provide that service, the WIMs, as managers of the platform, are in charge of controlling

the switching/routing elements underneath and/or invoking other SDN Controllers in lower levels of

a hierarchy. Quite often, these switching elements are designed specifically to support SDN

operations with some well-known protocols (e.g. OpenFlow, OVSDB, TAPI…), although some

traditional means, such as Netconf/YANG, are commonly used as well.

Thus, via SDN/SDTN Controllers it is possible setting up many different types of connections,

involving different types of technologies:

• Virtual networks for a VIM

• MPLS connections

• VPN connections (overlay or with interaction with physical equipment)

• Inter-DC connections (various types)

• MAN connections

• Etc.

Due to the variety of WIM APIs available and the requirement to be open to future types of

technologies, OSM provides a plugin model for the calls needed for the inter-VIM connections

required by OSM to instantiate and manage a NS/NSI. As of today, OSM provides plugins to support:

• TAPI

• ONOS

• Dynpac

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 32

Following the same approach as in other cases of API diversity, this plugin model is easily extensible

to support additional WIM APIs and technologies.

Configuration and monitoring of Network Functions
Regarding Network Functions (VNFs, PNFs, HNFs), OSM incorporates them in a manner that provides

model-driven interaction with NFs through the use of Juju Charms, which allows NF vendors to

encapsulate their configuration mechanisms (NETCONF+YANG, Expect, SSH+scripts, Ansible, etc.).

This makes PNF (and HNF) management indistinguishable from VNF management in OSM.

Two different kinds of Juju charms are supported:

• Native charms, when NFs are able to run charms inside. This is particularly interesting for new

VNFs or cloud-like VNFs/Apps that already support charms. Interaction with those charms

happens directly from the orchestrator.

• Proxy charms, when NFs do not support running charms inside, which is always true for PNF. In

that case, the proxy charm will use the appropriate configuration protocol to interact with the

NF and run the desired actions for the primitive.

Platform Operation view: management of OSM as
Manager Platform

Interaction with Common Services for platform operation

Authentication

Following the recommendation of the standards (GS NFV-SOL005 – V2.4.1 Network Functions

Virtualisation (NFV) Release 2; Protocols and Data Models; RESTful protocols specification for the Os -

Ma-nfvo Reference Point), the APIs offered by OSM can only be accessed by authorized consumers.

Therefore, OSM has the ability to authenticate users against a user database and to authorize them

to do a set of operations in the context of a project.

Authentication/authorization schemes in OSM can be standalone or integrated with external

common services (company’s user databases and systems). Specifically, in the case of an

integrated/brownfield deployment with other components, OSM can interact with

authentication/authorization servers using the protocols/mechanisms exposed by them; this

interaction could vary, depending on the capabilities offered by the external systems from a simple

user authentication to a user and project-based authentication and authorization.

It must be noted that the workflow for user and project management might differ depending on the

case. In a standalone/greenfield case, users and projects can be created and managed directly via

API. In the integrated/brownfield case, the management of users and projects might be stored in the

organization’s user databases and systems.

Logging

OSM can export its logs to external systems using the protocols/mechanisms exposed by them. Logs

can include:

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 33

• System information, relevant to know the status of the servers hosting OSM and the relevant

processes

• Operational information. Each API call should be properly logged by the system

Data exportation

OSM provides the appropriate mechanisms to expose metrics and relevant data to be consumed by

external systems (e.g. data lakes). The simplest mechanism for this purpose is a messaging bus where

multiple consumers can be connected, read the information from the bus and export it to any

external system.

The minimal information expected to reach the previous bus would be:

• NF metrics (either coming from the NFVI/VIM or from the VNF itself)

• NF and NS alarms (either coming from the NFVI/VIM or from the VNF itself)

Nothing prevents that API calls and LCM events might also reach that bus and feed external systems.

Management of OSM

Authentication and Authorization Management

From the perspective of the real operation, OSM allows the partitioning of OSM resources into

different projects (also known as tenants), providing a separate space for:

• A given set of accessible NF packages

• A given set of accessible NS packages

• A given set of accessible NST

• The set of running NS

• The set of running Network Slices (NSI)

• Authorized VIM accounts.

• Authorized WIM accounts.

Some of the previous resources (e.g. NF packages, NS packages and Network Slices) might be

declared public (available for all projects) or available for a list of them. However, instances of

Network Servers and Network Slices will only belong to one project.

In addition, not all operations are expected to be allowed to all users. OSM allows the definition of

roles, with the set of privileges or access rights allowed from the whole set of operations:

• CRUD operations over a NF package

• CRUD operations over a NS package

• CRUD operations over NST – see next section

• CRUD operations over Network Services (instances)

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 34

• CRUD operations over Network Slices (instances) – see next section

• Advanced LCM of Network Services (e.g. scale out/in)

• Day-2 operations over Network Services

• Day-2 operations over Network Slices

• CRUD operations over VIM accounts

• CRUD operations over WIM accounts

• System operations (user, project and role mgmt. in a standalone/greenfield configuration)

Users of the system belong at least to one project, and each user might have potentially different

roles depending on the project. This is what is commonly known as a role-based access control

(RBAC) on a per-project and per-user basis, i.e. for each project a user belongs to, the user will have

a role with specific access rights. It must be noted that RBAC mechanisms typically involve the

definition of admin/root roles (with all privileges) and admin users, authorized in all projects with the

admin/root role.

The way to enforce that the actual privileges are preserved is typically through the NBI. For REST

APIs, this is typically achieved through token-based mechanisms, which means that:

• The client platforms of OSM are authenticated and authorized on a project basis, and get a

token based on the role in the project. That token identifies the set privileges for subsequent

operations.

• Client platforms will make API calls using that token. Based on the authorization rights

identified by the token, some operations will be allowed and others forbidden.

Bootstrap and addition of boundary conditions
The creation of Network Services and Network Slice Instances requires OSM to be previously fed with

enough information to deploy and operate them. The li fe cycle management of some of these inputs

(NF Packages, NS Packages and NS Templates) is fully managed by OSM. However, there are some

inputs whose lifecycle is managed by other service platforms:

• VIM accounts. In order to be able to deploy in a specific datacenter managed by a VIM, OSM

needs to know and store the access information and credentials of the VIM account to be used.

Those credentials are created by a VIM administrator, and should grant OSM sufficient rights to

perform CRUD operations on flavors, networks, images, volumes and instances. Those VIM

accounts need to be added to the NSO, previously to any deployment in that datacenter.

• Management networks visible from the VIM account. Each VNF deployed by OSM needs to be

accessible for configuration and operation, and this means that at least one of the VNF

interfaces will have to be connected to a management network with an IP address that is

reachable from OSM. This requires not only the creation of the network in the VIM, but also

guaranteeing that the network is usable from the VIM account that will be added to OSM, and

is reachable via IP from OSM.

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 35

• SDN controller accounts and relevant port mapping info for SDN Assist. In those cases where

OSM has to manage underlay networks on a datacenter through an SDN controller (SDN Assist),

OSM needs to know the access information and credentials to reach the SDN controller and

perform CRUD operations related to underlay networks. The setup of the SDN controller and its

accounts, and its connection to the datacenter infrastructure needs to happen in a provisioning

phase, typically by an administrator of the datacenter. Then, the SDN controller access

information and credentials need to be added to OSM and associated to a specific VIM prior to

any deployment in the datacenter controlled by that VIM. In addition, OSM will need to know

the mapping between compute node interfaces, e.g. the tuple (compute node, physical

interface), and SDN ports, e.g. the tuple (switch, port). That mapping will guarantee the

coherence of the operations from OSM to the VIMs and SDN controllers.

• WIM accounts and relevant port mapping info. In order to be able to deploy inter-datacenter

or inter-VIM NS/NSI, OSM will have to contact potentially one or several WIMs, and it will need

to know the access information and credentials of the WIM account to be used. Those

credentials are created by a WIM administrator, and should provide OSM enough rights to

perform CRUD operations on inter-DC/inter-VIM networks. Those WIM accounts need to be

added to OSM, prior to any multi-site deployment that may require the creation of inter-

DC/inter-VIM networks. In addition, OSM will need to know the mapping between external

DC/VIM ports, e.g. the tuple (VIM, swich, port) and the transport service point, e.g. the tuple

(transport switch, port), which will guarantee the coherence of operations from OSM to the

VIMs and WIMs.

• PDUs. In those cases where we want to define NS packages or NST consisting of PNF packages

or HNF packages, OSM is instructed about the available PDUs, i.e. the network appliances that

will be the building blocks of those PNF and HNF packages. We will need to provide the

management IP address of those PDUs, their type (so that they can be managed as a pool if

appropriate), their location (VIM) and the physical connections to the site (e.g. switch and port

of the infrastructure where the PDU is connected).

• PNFs and external networks. In those cases where the Network Service (or Network Slice)

needs to be connected to existing networks or PNFs that are not part of the Network Service

itself, we need to feed OSM with appropriate information to connect those entities to our

Network Service. One possibility among others would be adding those entities in OSM as

external networks of a VIM so that they could be mapped to a Virtual Link in the Network

Service at instantiation time. In addition, if OSM controls the creation of underlay networks, it

will be necessary to provide the datacenter switch and port where the PNF or external network

is attached.

Catalogs and shared databases

In a standalone/greenfield configuration, without the possibility of relying on an external catalogue

service, OSM is able to manage the catalogue of the different resources used to build, create and

operate Network Service and Slices:

• Physical Deployment Units

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 36

• Network Function packages (VNF, PNF, HNF)

• Network Service packages

• Network Slice Templates

• Network Functions: instances of running VNFs, HNFs or PNFs

• Network Services: instances of running NS

• Network Slice Instances

• VIM accounts

• SDN controller accounts

• WIM accounts

The catalogue of Network Services and Network Slice Instances also stores the history of operations

over that NS/NSI.

Regarding the technologies for storing those catalogues, OSM may support different types back-end

options for brownfield/integrated setups.

Platform logs and alams

In addition to the capability to export the logs to external systems, OSM can store internally the

following logs:

• System information, relevant to know the status of the servers hosting OSM and the relevant

processes

• Operational information. Each API call should be properly logged by the system

Log rotation policies are expected to be configurable and they should follow the log rotation

company’s policies.

Security

OSM has to provide the following security-related functionalities with respect to its northbound

interface:

• Authentication and authorized access from the clients.

• Proper isolation of catalogues per project. In some cases, as mentioned before, some of the

catalogue resources could be shared between projects.

• Secured NBI based on TLS

In addition, OSM provides mechanisms to hinder malicious access that could compromise both the

system and the data stored by the system. As an example, the internal architecture of OSM is

prepared to follow common security practices in commercial distributions and installers, so that

there are:

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 37

• No passwords stored in text files

• No default users and passwords in internal databases

• Proper encryption of the account information fed to the system (e.g. passwords from VIM

accounts)

• No processes running as root user directly in the system host.

• Secured and authenticated communication between internal modules only if they run in

different servers.

OSM Integration Guidelines

Once OSM functionality and management have been throughly described, it is worth a recap of the

strategies tham may be followed in order to integrate OSM into a global NFV/Network architecture

based on a service platform approach and understand the expected interaction with other platform’s

services and a reference set of pre-existing common management and auxiliary services.

Reference Architecture of Service Platforms and Common Management
In order to conduct the exercise, in our example we will take as starting point the service platform

presented during the discussion of OSM Scope and Functionality and we will add a tentative set of

auxiliary services and tools for joint management of the service platforms which will be taken as

reference during the rest of the chapter:

OSM in Service Platform architecture with Common Management

Based on the Service Platform view thoroughly described in the discussion about OSM’s scope and

functionality:

• OSM as Network Service Orchestrator is in charge of controlling the lifecycle of Network

Services and Network Slices offered on demand as a service northbound.

https://osm.etsi.org/wikipub/index.php/Service_Platform_view_and_Layered_Service_Architectures
https://osm.etsi.org/wikipub/index.php/OSM_Scope_and_Functionality
https://osm.etsi.org/wikipub/index.php/OSM_Scope_and_Functionality
https://osm.etsi.org/wikipub/index.php/Platform_Operation_view:_management_of_OSM_as_Manager_Platform
https://osm.etsi.org/wikipub/index.php/Service_Platform_view_and_Layered_Service_Architectures
https://osm.etsi.org/wikipub/index.php/Service_Platform_view_and_Layered_Service_Architectures
https://osm.etsi.org/wikipub/index.php/OSM_Scope_and_Functionality
https://osm.etsi.org/wikipub/index.php/OSM_Scope_and_Functionality

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 38

• There is a number of VIMs that work as managers of Virtual Infrastructure Platforms. They

would expose the reference point Or-Vi northbound to provide IaaS on demand. This reference

point would be accessible for OSM to obtain any IaaS needed to compose and manage the

NS/NSI. In cases where a given VIM where unable to provide underlay connectivity, it might be

possible to follow the SDN Assist approach, where OSM will work with an augmented VIM API,

composed of a vanilla VIM API and an SDNC API.

• Likewise, there would be a set of WIM(s) that would work as managers of SW-Defined

Networks. The WIMs would expose the reference point Or-Wi northbound to provide

connectivity as a service among the VIMs (even if they required inter-datacenter connections).

This reference point would be accessible for OSM to serve to the NS/NSI creation and lifecycle.

It must be noted that a proper connection with these service interfaces is, strictly speaking, the

only integration required to allow OSM to be completely functional and work normally.

In addition to these well-known interfaces, the sample architecture incorporates a set of well -known

auxiliary services and tools for joint management of the service platforms, which we can classify

into different categories based on their nature:

• Common services. These functions offer basic functionalities, available for all the Service

Platforms that may require them, which are intended to offer a common context easily

accessible to all of them:

– Identity. This service eases the management of user identities that can be shared

across the different platforms with a well-known protocol (e.g. LDAP). In the context of

API calls, this service typically works as a common service callable by the RBAC (role

based access control) subsystem of each platform prior to any operation that requires

issuing a token.

– Single Sign On (SSO). This service is intended to provide a context after logging that is

common across different web portals available in a portal collection, so that

authentication in one of them can be trusted by the others.

– PKI. A PKI infrastructure would facilitate the management of the different certificates as

well as providing a common root source of trust for the local environment. This role is

essential, among other purposes, to give client platforms means to recognize and trust

the available serving platforms in a dynamic fashion.

– DNS. A local name resolution service facilitates the use of common fully qualified

domain names (FQDN) across the platforms, so that components and API endpoints can

be easily referred by a name understandable by all the platforms.

• O&M. Collection of tools coming from the different platforms to ease their respective O&M

operations and control their lifecycle, including the own platform setup process. One typical

example are installers and lifecycle environments that come with different OpenStack distros.

• Backends. These functions are intended to ease the treatment of different types of data

(permanent or volatile) that are generated by the platforms, so that it can be conveniently

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 39

aggregated, filtered and correlated in a single point and also ease recurrent housekeeping tasks

(e.g. replication), which can be conveniently centralized. Typically, these types of backends

include a logs backend, an alarms backend and a metrics backend. Alarms and metrics

backends can be used by the platforms to inject alarms and metrics related both to the

platform itself or to the service objects that it offers on demand, so that they can be referred

afterwads. On the other hand, logs and alarms backends might share the same type of backend

technology in practice if the ingestion mechanisms can be normalized. On the contrary, the

metrics backend might require a faster type of technology, such as a Time Series Database

(TSBD).

• Web portals and wizards. In order to ease some common operation tasks or gain a human-

friendly/real-time view of the state of the platform and its components, there might be a set of

tools of web-based portals that will facilitate such common interactions and might access both

the service APIs and/or their respective O&M components. Into this category, we may typically

find:

– Dashboards. Intended to provide a global view of the state, either per platform or per

global states that can be aggregated and/or filtered (e.g. alarms). Graphical

visualization of topologies, templates and objects is a common feature, as well as the

listing of the different catalogs and backend data, or various CRUD operations over

them. These dashboards are usually capable of working as means to invoke on the

demand the services offered by the respective platforms, requiring access to the

corresponding service northbound APIs.

– Wizards. In some cases, it is convenient to coordinate complex O&M operations that

might involve more than one platform or which might benefit from a guided step-by-

step process to minimize potential errors. Sometimes the roles of dashboard and

wizard can be found bundled into the same tool (e.g Horizon).

It must also be noted that, although these auxiliary and common services are not strictly required to

set up and operate the platform, are highly convenient to ease integration and troubleshooting

across platforms, so it is a good practice to leverage on them for production setups, and hence we

will consider them in these integration guidelines.

Integration points
Taking as starting point the sample architecture described above, the following picture summarizes

which integration points from the ones described above are relevant from OSM’s perspective and

might require a careful consideration and proper identification in the target environment:

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 40

OSM integration points

(DNS is ommitted, as it is self-explanatory).

Service view (northbound and southbound)

VIM(s)

To proceed with this integration, the following checks are recommended:

• Check if the VIM(s) to be used belong to VIM families already supported by OSM (otherwise a

new VIM plugin might be required).

• Obtain the respective service endopoints of the VIM(s).

• Obtain accounts and tenants per VIM with the required permissions and privileges to perform

all NSO operations.

• Check if there is a management network (sometimes called OAM network) in the VIM to attach

the management interfaces of the VNFs and which is reachable from outside by OSM.

Othewise, create it.

• If some VIMs were unable to create underlay connections intra-VIM, consider for those VIMs

the use of and SDN Assist configuration. In those cases:

– Check if the SDN Controller(s) are connected to a fabric that is properly configured to

perform those intra-VIM underlay connections. If so, obtain the proper port mapping.

– Check if the SDN Controller(s) to be used belong to an SDNC family already supported

by OSM (otherwise a new SDNC plugin might be required).

– Obtain the respective service endopoints of the SDNC(s).

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 41

– Obtain accounts and tenants per SDNC with the required permissions and privileges.

Once these checks are made and the proper information is gathered, the integration would be

completed by the mere addition of these boundary conditions via one of the regular procedures in

OSM (GUI, CLI, API). In this case, this action would mean the addition of VIM accounts (‘targets’),

including credentials, API endpoint, name of management networks, etc. Whenever required, the

VIM account would also include the rest of the information required for SDN Assist.

In case there were some PDUs (or PNFs) which needed to be considered in an initial setup, they

would be added to OSM via this same procedure in OSM, providing their management IP addresses,

their type (if they should be pooled), their VIM of reference and the physical connections to the site

(e.g. switch and port of the infrastructure where the PDU is connected).

WIM(s)
To proceed with this integration, the following checks are recommended:

• Check if the WIM(s) to be used belong to WIM families already supported by OSM (otherwise a

new WIM plugin might be required).

• Obtain the respective service endopoints of the WIM(s).

• Obtain accounts and tenants per WIM with the required privileges to perform all NSO

operations.

• Learn the mapping between external DC/VIM ports, e.g. the tuple (VIM, swich, port) and the

transport service point, e.g. the tuple (transport switch, port).

Once these checks are made and the proper information is gathered, the integration would be

completed by the mere addition of these boundary conditions via one of the regular procedures in

OSM (GUI, CLI, API). In this case, this action would mean the addition of WIM accounts and set of

mappings.

OSS/BSS
OSM’s NBI should be accessible from the OSS and BSS platforms. In addition, at least an use r and

tenant in OSM with sufficient privileges would need to be created to be used by the respective

OSS/BSS platforms.

Common auxiliary services and tools

Common services consumed
If properly instructed, OSM can use existing available common services in order to minimize the

provisioning time and improve the coordination with the rest of platforms in the environment. These

kinds of platforms can be successfully leveraged by OSM:

• User database. OSM’s RBAC can be leverage on an external user database via wel l-known

protocols (e.g. LDAP) to support the user authentication during the RBAC phase.

• Single Sign On Server (SSO). OSM’s web GUI can work in coordination with other pre -existing

web portals sharing authentication via SSO, so that login/logout info is common across them.

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 42

• Public Key Infrastructure (PKI). OSM by default validates the authenticity of the endpoints of

any platform it interacts with (VIMs, WIMs). In order to ease the setup for thus purpose, OSM

may leverage on a pre-existing PKI to validate the autenticity of the endopoints.

Backends for OSM’s outputs
OSM produces and manages a large set of relevant information related to:

• Events and states in the Network Services and Network Slices and their components.

• Information related to its internal events as manager function.

OSM feed this information regularly to three types of events:

• Log entries, which can be fed to a central log collector.

• Alarms and other types of events, which can be fed to a central alarm collector.

• Likewise, there are a number of metrics related to the NS/NSI and OSM as manager function

which can be fed to a metrics collector.

O&M tools
OSM’s installer (community-based or commercial) and companion OSM’s O&M tools should be

deployed in the same architectural region (i.e. with the same restrictions, security and access rules)

as the rest of O&M tools of the architecture.

GUI and dashboard for alarms, logs and metrics
OSM’s web-based GUI can be added to a pre-existing collection of web portals (i.e. with the same

restrictions, security and access rules), only by granting access to OSM’s NBI and the common SSO

service.

Likewise, it is also possible to include OSM’s dashboard for alarms, logs and metrics in the collection

of web portals provided it has proper access granted to the approrpiate backends as well as the SSO

service.

OSM SCOPE, FUNCTIONALITY, OPERATION AND INTEGRATION GUIDELINES 43

ETSI

06921 Sophia Antipolis CEDEX, France

Tel +33 4 92 94 42 00

info@etsi.org

www.etsi.org

This White Paper is issued for information only. It does not constitute an official or agreed position of ETS I,

nor of its Members. The views expressed are entirely those of the author(s).

ETSI declines all responsibility for any errors and any loss or damage resulting from use of the contents of this White

Paper .

ETSI also declines responsibility for any infringement of any third party's Intellectual Property Rights (IPR), but will

be pleased to acknowledge any IPR and correct any infringement of which it is advised .

Copyright Notification

Copying or reproduction in whole is permitted if the copy is complete and unchanged (including this copyright

statement).

 © European Telecommunications Standards Institute 2019. All rights reserved .

DECT™, PLUGTESTS™, UMTS™, TIPHON™, IMS™, INTEROPOLIS™, FORAPOLIS™, and the TIPHON and

ETSI logos are Trade Marks of ETSI registered for the benefit of its Members .

3GPP™ and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational

Partners .

GSM™, the Global System for Mobile communication, is a registered Trade Mark of the GSM Association .

mailto:info@etsi.org

